Increasing the phylogenetic coverage for understanding broad-scale diversity gradients.

DNA metabarcoding Elevational diversity Negative density dependence Productivity hypothesis Species energy theory Temperature-speciation hypothesis

Journal

Oecologia
ISSN: 1432-1939
Titre abrégé: Oecologia
Pays: Germany
ID NLM: 0150372

Informations de publication

Date de publication:
Mar 2020
Historique:
received: 24 05 2019
accepted: 30 01 2020
pubmed: 14 2 2020
medline: 10 3 2020
entrez: 14 2 2020
Statut: ppublish

Résumé

Despite decades of scientific effort, there is still no consensus on the determinants of broad-scale gradients of animal diversity. We argue that general drivers of diversity are unlikely to be found among the narrowly defined taxa which are typically analyzed in studies of broad-scale diversity gradients because ecological niches evolve largely conservatively. This causes constraints in the use of available niche space leading to systematic differences in diversity gradients among taxa. We instead advocate studies of phylogenetically diverse animal communities along broad environmental gradients. Such multi-taxa communities are less constrained in resource use and diversification and may be better targets for testing major classical hypotheses on diversity gradients. Besides increasing the spatial scale in analyses, expanding the phylogenetic coverage may be a second way to achieve higher levels of generality in studies of broad-scale diversity gradients.

Identifiants

pubmed: 32052181
doi: 10.1007/s00442-020-04615-x
pii: 10.1007/s00442-020-04615-x
pmc: PMC7058593
doi:

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

629-639

Subventions

Organisme : Deutsche Forschungsgemeinschaft
ID : FOR1246

Références

Allen AP, Gillooly JF, Savage VM, Brown JH (2006) Kinetic effects of temperature on rates of genetic divergence and speciation. Proc Natl Acad Sci 103:9130–9135
doi: 10.1073/pnas.0603587103
Allen AP, Gillooly JF, Brown JH (2007) Recasting the species-energy hypothesis: the different roles of kinetic and potential energy in regulating biodiversity. In: Storch D, Marquet PA, Brown JH (eds) Scaling biodiversity. Cambridge University Press, Cambridge, pp 283–299
doi: 10.1017/CBO9780511814938.016
Bagchi R, Gallery RE, Gripenberg S et al (2014) Pathogens and insect herbivores drive rainforest plant diversity and composition. Nature 506:85–88. https://doi.org/10.1038/nature12911
doi: 10.1038/nature12911 pubmed: 24463522
Basset Y, Cizek L, Cuenoud P et al (2012) Arthropod diversity in a tropical forest. Science 338:1481–1484. https://doi.org/10.1126/science.1226727
doi: 10.1126/science.1226727 pubmed: 23239740
Belmaker J, Jetz W (2015) Relative roles of ecological and energetic constraints, diversification rates and region history on global species richness gradients. Ecol Lett 18:563–571. https://doi.org/10.1111/ele.12438
doi: 10.1111/ele.12438 pubmed: 25919478
Brown JH (1995) Macroecology. The University of Chicago Press, Chicago, London
Brown JH (2014) Why are there so many species in the tropics? J Biogeogr 41:8–22. https://doi.org/10.1111/jbi.12228
doi: 10.1111/jbi.12228 pubmed: 25684838
Chao A, Chiu C-H (2016) Nonparametric estimation and comparison of species richness. In: John Wiley & Sons Ltd (eds) eLS. Wiley, Chichester, pp 1–11
Classen A, Peters MK, Kindeketa WJ et al (2015) Temperature versus resource constraints: which factors determine bee diversity on Mount Kilimanjaro, Tanzania? Glob Ecol Biogeogr 24:642–652. https://doi.org/10.1111/geb.12286
doi: 10.1111/geb.12286
Colwell RK, Gotelli NJ, Ashton LA et al (2016) Midpoint attractors and species richness: modelling the interaction between environmental drivers and geometric constraints. Ecol Lett 19:1009–1022. https://doi.org/10.1111/ele.12640
doi: 10.1111/ele.12640 pubmed: 27358193
Crisp MD, Cook LG (2012) Phylogenetic niche conservatism: what are the underlying evolutionary and ecological causes? New Phytol 196:681–694. https://doi.org/10.1111/j.1469-8137.2012.04298.x
doi: 10.1111/j.1469-8137.2012.04298.x pubmed: 22943495
Crisp MD, Arroyo MTK, Cook LG et al (2009) Phylogenetic biome conservatism on a global scale. Nature 458:754–756. https://doi.org/10.1038/nature07764
doi: 10.1038/nature07764 pubmed: 19219025
Davies TJ, Pedersen AB (2008) Phylogeny and geography predict pathogen community similarity in wild primates and humans. Proc R Soc B Biol Sci 275:1695–1701. https://doi.org/10.1098/rspb.2008.0284
doi: 10.1098/rspb.2008.0284
Didham RK, Edwards OR, Leather SR, Basset Y (2013) Arthropod diversity and the future of all-taxa inventories. Insect Conserv Divers 6:1–4. https://doi.org/10.1111/icad.12022
doi: 10.1111/icad.12022
Downey H, Lewis OT, Bonsall MB et al (2018) Insect herbivory on seedlings of rainforest trees: effects of density and distance of conspecific and heterospecific neighbors. Ecol Evol 8:12702–12711. https://doi.org/10.1002/ece3.4698
doi: 10.1002/ece3.4698 pubmed: 30619575 pmcid: 6308876
Farwig N, Brandl R, Siemann S et al (2014) Decomposition rate of carrion is dependent on composition not abundance of the assemblages of insect scavengers. Oecologia 175:1291–1300. https://doi.org/10.1007/s00442-014-2974-y
doi: 10.1007/s00442-014-2974-y pubmed: 24859425
Fine PVA (2015) Ecological and evolutionary drivers of geographic variation in species diversity. Annu Rev Ecol Evol Syst 46:369–392. https://doi.org/10.1146/annurev-ecolsys-112414-054102
doi: 10.1146/annurev-ecolsys-112414-054102
Gaston KJ, Blackburn TM (2000) Pattern and process in macroecology. Blackwell Science, Oxford, Malden
doi: 10.1002/9780470999592
Gilbert GS, Webb CO (2007) Phylogenetic signal in plant pathogen–host range. Proc Natl Acad Sci 104:4979–4983
doi: 10.1073/pnas.0607968104
Hillebrand H (2004) On the generality of the latitudinal diversity gradient. Am Nat 163:192–211. https://doi.org/10.1086/381004
doi: 10.1086/381004 pubmed: 14970922
Hof C, Rahbek C, Araújo MB (2010) Phylogenetic signals in the climatic niches of the world’s amphibians. Ecography 33:242–250. https://doi.org/10.1111/j.1600-0587.2010.06309.x
doi: 10.1111/j.1600-0587.2010.06309.x
Hurlbert AH, Stegen JC (2014) When should species richness be energy limited, and how would we know? Ecol Lett 17:401–413. https://doi.org/10.1111/ele.12240
doi: 10.1111/ele.12240 pubmed: 24393362
Hutchinson GE (1959) Homage to Santa Rosalia or why are there so many kinds of animals? Am Nat 93:145–159
doi: 10.1086/282070
Jetz W, Fine PVA (2012) Global gradients in vertebrate diversity predicted by historical area-productivity dynamics and contemporary environment. PLoS Biol 10:e1001292. https://doi.org/10.1371/journal.pbio.1001292
doi: 10.1371/journal.pbio.1001292 pubmed: 22479151 pmcid: 3313913
Ji Y, Ashton L, Pedley SM et al (2013) Reliable, verifiable and efficient monitoring of biodiversity via metabarcoding. Ecol Lett 16:1245–1257. https://doi.org/10.1111/ele.12162
doi: 10.1111/ele.12162 pubmed: 23910579
Johnson DJ, Beaulieu WT, Bever JD, Clay K (2012) Conspecific negative density dependence and forest diversity. Science 336:904–907. https://doi.org/10.1126/science.1220269
doi: 10.1126/science.1220269 pubmed: 22605774
Kaspari M, O’Donnell S, Kercher JR (2000) Energy, density, and constraints to species richness: ant assemblages along a productivity gradient. Am Nat 155:280–293. https://doi.org/10.1086/303313
doi: 10.1086/303313 pubmed: 10686166
Kozak KH, Wiens JJ (2010) Niche conservatism drives elevational diversity patterns in appalachian salamanders. Am Nat 176:40–54. https://doi.org/10.1086/653031
doi: 10.1086/653031 pubmed: 20497055
Kreft H, Jetz W (2007) Global patterns and determinants of vascular plant diversity. Proc Natl Acad Sci 104:5925–5930
doi: 10.1073/pnas.0608361104
Kress WJ, García-Robledo C, Uriarte M, Erickson DL (2015) DNA barcodes for ecology, evolution, and conservation. Trends Ecol Evol 30:25–35. https://doi.org/10.1016/j.tree.2014.10.008
doi: 10.1016/j.tree.2014.10.008 pubmed: 25468359
Kühsel S, Blüthgen N (2015) High diversity stabilizes the thermal resilience of pollinator communities in intensively managed grasslands. Nat Commun 6:7989. https://doi.org/10.1038/ncomms8989
doi: 10.1038/ncomms8989 pubmed: 26258282 pmcid: 4918356
LaManna JA, Mangan SA, Alonso A et al (2017) Plant diversity increases with the strength of negative density dependence at the global scale. Science 356:1389–1392. https://doi.org/10.1126/science.aam5678
doi: 10.1126/science.aam5678 pubmed: 28663501
Leray M, Knowlton N (2015) DNA barcoding and metabarcoding of standardized samples reveal patterns of marine benthic diversity. Proc Natl Acad Sci 112:2076–2081
doi: 10.1073/pnas.1424997112
Leray M, Yang JY, Meyer CP et al (2013) A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: application for characterizing coral reef fish gut contents. Front Zool 10:34
doi: 10.1186/1742-9994-10-34
Liu Y, Fang S, Chesson P, He F (2015) The effect of soil-borne pathogens depends on the abundance of host tree species. Nat Commun 6:10017. https://doi.org/10.1038/ncomms10017
doi: 10.1038/ncomms10017 pubmed: 26632594 pmcid: 4686666
Lomolino MV (2006) Biogeography, 3rd edn. Sinauer Associates, Sunderland
Losos JB (2008) Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecol Lett 11:995–1003. https://doi.org/10.1111/j.1461-0248.2008.01229.x
doi: 10.1111/j.1461-0248.2008.01229.x pubmed: 18673385
Makanga B, Yangari P, Rahola N et al (2016) Ape malaria transmission and potential for ape-to-human transfers in Africa. Proc Natl Acad Sci 113:5329–5334. https://doi.org/10.1073/pnas.1603008113
doi: 10.1073/pnas.1603008113 pubmed: 27071123
Mannion PD, Upchurch P, Benson RBJ, Goswami A (2014) The latitudinal biodiversity gradient through deep time. Trends Ecol Evol 29:42–50. https://doi.org/10.1016/j.tree.2013.09.012
doi: 10.1016/j.tree.2013.09.012 pubmed: 24139126
Martinsen ES, Perkins SL, Schall JJ (2008) A three-genome phylogeny of malaria parasites (Plasmodium and closely related genera): evolution of life-history traits and host switches. Mol Phylogenet Evol 47:261–273. https://doi.org/10.1016/j.ympev.2007.11.012
doi: 10.1016/j.ympev.2007.11.012
McCain CM, Grytnes J-A (2010) Elevational gradients in species richness. Encyclopedia of life sciences. Wiley, Chichester
McGill BJ (2010) Towards a unification of unified theories of biodiversity: towards a unified unified theory. Ecol Lett 13:627–642. https://doi.org/10.1111/j.1461-0248.2010.01449.x
doi: 10.1111/j.1461-0248.2010.01449.x pubmed: 20337695
Merckx VSFT, Hendriks KP, Beentjes KK et al (2015) Evolution of endemism on a young tropical mountain. Nature 524:347–350. https://doi.org/10.1038/nature14949
doi: 10.1038/nature14949 pubmed: 26266979
Mittelbach GG, Schemske DW, Cornell HV et al (2007) Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. Ecol Lett 10:315–331. https://doi.org/10.1111/j.1461-0248.2007.01020.x
doi: 10.1111/j.1461-0248.2007.01020.x pubmed: 17355570
Nogués-Bravo D, Araújo MB, Romdal T, Rahbek C (2008) Scale effects and human impact on the elevational species richness gradients. Nature 453:216–219. https://doi.org/10.1038/nature06812
doi: 10.1038/nature06812 pubmed: 18464741
Palin OF, Eggleton P, Malhi Y et al (2011) Termite diversity along an Amazon-Andes elevation gradient, Peru. Biotropica 43:100–107. https://doi.org/10.1111/j.1744-7429.2010.00650.x
doi: 10.1111/j.1744-7429.2010.00650.x
Parker IM, Saunders M, Bontrager M et al (2015) Phylogenetic structure and host abundance drive disease pressure in communities. Nature 520:542–544. https://doi.org/10.1038/nature14372
doi: 10.1038/nature14372 pubmed: 25903634
Peters MK, Hemp A, Appelhans T et al (2016) Predictors of elevational biodiversity gradients change from single taxa to the multi-taxa community level. Nat Commun 7:13736. https://doi.org/10.1038/ncomms13736
doi: 10.1038/ncomms13736 pubmed: 28004657 pmcid: 5192166
Peters MK, Hemp A, Appelhans T et al (2019) Climate–land-use interactions shape tropical mountain biodiversity and ecosystem functions. Nature 568:88–92. https://doi.org/10.1038/s41586-019-1048-z
doi: 10.1038/s41586-019-1048-z pubmed: 30918402
Price TD, Hooper DM, Buchanan CD et al (2014) Niche filling slows the diversification of Himalayan songbirds. Nature 509:222–225. https://doi.org/10.1038/nature13272
doi: 10.1038/nature13272 pubmed: 24776798
Rader R, Bartomeus I, Garibaldi LA et al (2016) Non-bee insects are important contributors to global crop pollination. Proc Natl Acad Sci 113:146–151. https://doi.org/10.1073/pnas.1517092112
doi: 10.1073/pnas.1517092112 pubmed: 26621730
Rahbek C (2005) The role of spatial scale and the perception of large-scale species-richness patterns: scale and species-richness patterns. Ecol Lett 8:224–239. https://doi.org/10.1111/j.1461-0248.2004.00701.x
doi: 10.1111/j.1461-0248.2004.00701.x
Röder J, Detsch F, Otte I et al (2017) Heterogeneous patterns of abundance of epigeic arthropod taxa along a major elevation gradient. Biotropica 49:217–228. https://doi.org/10.1111/btp.12403
doi: 10.1111/btp.12403
Schemske DW, Mittelbach GG, Cornell HV et al (2009) Is there a latitudinal gradient in the importance of biotic interactions? Annu Rev Ecol Evol Syst 40:245–269. https://doi.org/10.1146/annurev.ecolsys.39.110707.173430
doi: 10.1146/annurev.ecolsys.39.110707.173430
Seibold S, Cadotte MW, MacIvor JS et al (2018) The necessity of multitrophic approaches in community ecology. Trends Ecol Evol 33:754–764. https://doi.org/10.1016/j.tree.2018.07.001
doi: 10.1016/j.tree.2018.07.001 pubmed: 30146326
Smith MA, Woodley NE, Janzen DH et al (2006) DNA barcodes reveal cryptic host-specificity within the presumed polyphagous members of a genus of parasitoid flies (Diptera: Tachinidae). Proc Natl Acad Sci USA 103:3657–3662
doi: 10.1073/pnas.0511318103
Smith MA, Rodriguez JJ, Whitfield JB et al (2008) Extreme diversity of tropical parasitoid wasps exposed by iterative integration of natural history, DNA barcoding, morphology, and collections. Proc Natl Acad Sci 105:12359–12364
doi: 10.1073/pnas.0805319105
Sundqvist MK, Sanders NJ, Wardle DA (2013) Community and ecosystem responses to elevational gradients: processes, mechanisms, and insights for global change. Annu Rev Ecol Evol Syst 44:261–280
doi: 10.1146/annurev-ecolsys-110512-135750
Tittensor DP, Mora C, Jetz W et al (2010) Global patterns and predictors of marine biodiversity across taxa. Nature 466:1098–1101. https://doi.org/10.1038/nature09329
doi: 10.1038/nature09329 pubmed: 20668450
Weiser MD, Swenson NG, Enquist BJ et al (2018) Taxonomic decomposition of the latitudinal gradient in species diversity of North American floras. J Biogeogr 45:418–428. https://doi.org/10.1111/jbi.13131
doi: 10.1111/jbi.13131
Wiens JJ, Graham CH (2005) Niche conservatism: integrating evolution, ecology, and conservation biology. Annu Rev Ecol Evol Syst 36:519–539. https://doi.org/10.1146/annurev.ecolsys.36.102803.095431
doi: 10.1146/annurev.ecolsys.36.102803.095431
Wiens JJ, Ackerly DD, Allen AP et al (2010) Niche conservatism as an emerging principle in ecology and conservation biology: niche conservatism, ecology, and conservation. Ecol Lett 13:1310–1324. https://doi.org/10.1111/j.1461-0248.2010.01515.x
doi: 10.1111/j.1461-0248.2010.01515.x pubmed: 20649638
Wright DH (1983) Species-energy theory: an extension of species-area theory. Oikos 41:496–506
doi: 10.2307/3544109
Yeh C-F, Soininen J, Teittinen A, Wang J (2019) Elevational patterns and hierarchical determinants of biodiversity across microbial taxonomic scales. Mol Ecol 28:86–99. https://doi.org/10.1111/mec.14935
doi: 10.1111/mec.14935 pubmed: 30427089

Auteurs

Marcell K Peters (MK)

Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany. marcell.peters@uni-wuerzburg.de.

Alice Classen (A)

Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany.

Jörg Müller (J)

Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany.
Bavarian Forest National Park, Freyunger Str. 2, 94481, Grafenau, Germany.

Ingolf Steffan-Dewenter (I)

Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Am Hubland, 97074, Würzburg, Germany.

Articles similaires

Genome, Chloroplast Phylogeny Genetic Markers Base Composition High-Throughput Nucleotide Sequencing
Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice

Classifications MeSH