A Synchronized Circadian Clock Enhances Early Chondrogenesis.
KL001
RT-qPCR
circadian rhythm
cosine fits
in vitro chondrogenesis
longdaysin
micromass culture
molecular clock
Journal
Cartilage
ISSN: 1947-6043
Titre abrégé: Cartilage
Pays: United States
ID NLM: 101518378
Informations de publication
Date de publication:
12 2021
12 2021
Historique:
pubmed:
16
2
2020
medline:
7
4
2022
entrez:
16
2
2020
Statut:
ppublish
Résumé
Circadian rhythms in cartilage homeostasis are hypothesized to temporally segregate and synchronize the activities of chondrocytes to different times of the day, and thus may provide an efficient mechanism by which articular cartilage can recover following physical activity. While the circadian clock is clearly involved in chondrocyte homeostasis in health and disease, it is unclear as to what roles it may play during early chondrogenesis. The purpose of this study was to determine whether the rhythmic expression of the core circadian clock was detectable at the earliest stages of chondrocyte differentiation, and if so, whether a synchronized expression pattern of chondrogenic transcription factors and developing cartilage matrix constituents was present during cartilage formation. Following serum shock, embryonic limb bud-derived chondrifying micromass cultures exhibited synchronized temporal expression patterns of core clock genes involved in the molecular circadian clock. We also observed that chondrogenic marker genes followed a circadian oscillatory pattern. Clock synchronization significantly enhanced cartilage matrix production and elevated Results from this study suggest that a functional molecular clockwork plays a positive role in tissue homeostasis and histogenesis during early chondrogenesis.
Identifiants
pubmed: 32059614
doi: 10.1177/1947603520903425
pmc: PMC8804825
doi:
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
53S-67SRéférences
J Biol Chem. 2012 Oct 19;287(43):36081-95
pubmed: 22936800
Endocrinology. 2012 Feb;153(2):592-601
pubmed: 22166979
Genes Cells. 2001 Sep;6(9):825-36
pubmed: 11554928
Science. 2012 Aug 31;337(6098):1094-7
pubmed: 22798407
In Vitro Cell Dev Biol Anim. 1999 May;35(5):262-9
pubmed: 10475272
Nature. 2010 Jul 29;466(7306):627-31
pubmed: 20562852
Cell Calcium. 2008 Sep;44(3):310-23
pubmed: 18291522
Endocr Connect. 2019 Jan 1;8(1):57-68
pubmed: 30533004
PLoS One. 2016 Jan 07;11(1):e0146674
pubmed: 26741371
Chronobiol Int. 2016;33(5):574-9
pubmed: 27019373
Biogerontology. 2015 Apr;16(2):209-19
pubmed: 25078075
J Am Chem Soc. 2019 Oct 9;141(40):15784-15791
pubmed: 31509406
Eur J Neurosci. 2011 Apr;33(8):1533-40
pubmed: 21366728
Endocr Rev. 2016 Dec;37(6):584-608
pubmed: 27763782
Am J Med Genet. 1989 Sep;34(1):30-4
pubmed: 2683778
J Clin Invest. 2016 Jan;126(1):365-76
pubmed: 26657859
Cancer Res. 2004 Aug 1;64(15):5245-50
pubmed: 15289330
Cell. 1998 Jun 12;93(6):929-37
pubmed: 9635423
Endocrinology. 2016 Aug;157(8):3096-107
pubmed: 27253997
Cell Stem Cell. 2009 Apr 3;4(4):324-35
pubmed: 19341622
Annu Rev Physiol. 2010;72:551-77
pubmed: 20148688
J Clin Invest. 2013 Dec;123(12):5389-400
pubmed: 24270424
J Biol Rhythms. 2016 Oct;31(5):415-27
pubmed: 27558096
Osteoarthritis Cartilage. 2014 Feb;22(2):334-43
pubmed: 24361742
J Orthop Res. 1990 Jan;8(1):132-5
pubmed: 2293628
Proc Natl Acad Sci U S A. 2014 Nov 11;111(45):16219-24
pubmed: 25349387
Int J Mol Sci. 2019 Jan 15;20(2):
pubmed: 30650649
Annu Rev Neurosci. 2012;35:445-62
pubmed: 22483041
Stem Cells Int. 2017;2017:2057168
pubmed: 29201058
EMBO Rep. 2017 Jul;18(7):1199-1212
pubmed: 28536247
Nat Rev Genet. 2017 Mar;18(3):164-179
pubmed: 27990019
PLoS One. 2016 Mar 03;11(3):e0150665
pubmed: 26938655
EMBO Rep. 2018 Jan;19(1):18-28
pubmed: 29258993
Arthritis Rheum. 2013 Sep;65(9):2334-45
pubmed: 23896777
Mod Rheumatol. 2006;16(3):131-6
pubmed: 16767550
Chronobiol Int. 2019 Mar;36(3):319-331
pubmed: 30403881
J Biol Chem. 2006 Aug 18;281(33):23632-42
pubmed: 16777848
Int J Mol Sci. 2013 Aug 05;14(8):16141-67
pubmed: 23921684