CEP44 ensures the formation of bona fide centriole wall, a requirement for the centriole-to-centrosome conversion.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
14 02 2020
14 02 2020
Historique:
received:
25
06
2019
accepted:
30
01
2020
entrez:
16
2
2020
pubmed:
16
2
2020
medline:
2
6
2020
Statut:
epublish
Résumé
Centrosomes are essential organelles with functions in microtubule organization that duplicate once per cell cycle. The first step of centrosome duplication is the daughter centriole formation followed by the pericentriolar material recruitment to this centriole. This maturation step was termed centriole-to-centrosome conversion. It was proposed that CEP295-dependent recruitment of pericentriolar proteins drives centriole conversion. Here we show, based on the analysis of proteins that promote centriole biogenesis, that the developing centriole structure helps drive centriole conversion. Depletion of the luminal centriole protein CEP44 that binds to the A-microtubules and interacts with POC1B affecting centriole structure and centriole conversion, despite CEP295 binding to centrioles. Impairment of POC1B, TUBE1 or TUBD1, which disturbs integrity of centriole microtubules, also prevents centriole-to-centrosome conversion. We propose that the CEP295, CEP44, POC1B, TUBE1 and TUBD1 centriole biogenesis pathway that functions in the centriole lumen and on the cytoplasmic side is essential for the centriole-to-centrosome conversion.
Identifiants
pubmed: 32060285
doi: 10.1038/s41467-020-14767-2
pii: 10.1038/s41467-020-14767-2
pmc: PMC7021698
doi:
Substances chimiques
CEP44 protein, human
0
Cell Cycle Proteins
0
POC1B protein, human
0
TUBD1 protein, human
0
Tubulin
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
903Références
Bornens, M. The centrosome in cells and organisms. Science. 335, 422–426 (2012).
pubmed: 22282802
doi: 10.1126/science.1209037
pmcid: 22282802
Conduit, P. T., Wainman, A. & Raff, J. W. Centrosome function and assembly in animal cells. Nat. Rev. Mol. Cell Biol. 16, 611–624 (2015).
pubmed: 26373263
doi: 10.1038/nrm4062
pmcid: 26373263
Azimzadeh, J. & Marshall, W. F. Building the centriole. Curr. Biol. 20, R816–R825 (2010).
pubmed: 20869612
pmcid: 2956124
doi: 10.1016/j.cub.2010.08.010
Fu, J. & Glover, D. M. Structured illumination of the interface between centriole and peri-centriolar material. Open Biol. 2, 120104 (2012).
pubmed: 22977736
pmcid: 3438536
doi: 10.1098/rsob.120104
Lawo, S., Hasegan, M., Gupta, G. D. & Pelletier, L. Subdiffraction imaging of centrosomes reveals higher-order organizational features of pericentriolar material. Nat. Cell Biol. 14, 1148–1158 (2012).
pubmed: 23086237
doi: 10.1038/ncb2591
pmcid: 23086237
Mennella, V. et al. Subdiffraction-resolution fluorescence microscopy reveals a domain of the centrosome critical for pericentriolar material organization. Nat. Cell Biol. 14, 1159–1168 (2012).
pubmed: 23086239
pmcid: 3767400
doi: 10.1038/ncb2597
Dictenberg, J. B. et al. Pericentrin and γ-tubulin form a protein complex and are organized into a novel lattice at the centrosome. J. Cell Biol. 141, 163–174 (1998).
pubmed: 9531556
pmcid: 2132723
doi: 10.1083/jcb.141.1.163
Zimmerman, W. C., Sillibourne, J., Rosa, J. & Doxsey, S. J. Mitosis-specific anchoring of γ tubulin complexes by pericentrin controls spindle organization and mitotic entry. Mol. Biol. Cell 15, 3642–3657 (2004).
pubmed: 15146056
pmcid: 491825
doi: 10.1091/mbc.e03-11-0796
Woodruff, J. B., Wueseke, O. & Hyman, A. A. Pericentriolar material structure and dynamics. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369, 20130459 (2014).
Dzhindzhev, N. S. et al. Plk4 phosphorylates Ana2 to trigger Sas6 recruitment and procentriole formation. Curr. Biol. 24, 2526–2532 (2014).
pubmed: 25264260
pmcid: 4229625
doi: 10.1016/j.cub.2014.08.061
Gönczy, P. Towards a molecular architecture of centriole assembly. Nat. Rev. Mol. Cell Biol. 13, 425–435 (2012).
pubmed: 22691849
doi: 10.1038/nrm3373
pmcid: 22691849
Guichard, P. et al. Native architecture of the centriole proximal region reveals features underlying Its 9-fold radial symmetry. Curr. Biol. 23, 1620–1628 (2013).
pubmed: 23932403
doi: 10.1016/j.cub.2013.06.061
pmcid: 23932403
Tsou, M.-F. B. & Stearns, T. Mechanism limiting centrosome duplication to once per cell cycle. Nature 442, 947–951 (2006).
pubmed: 16862117
doi: 10.1038/nature04985
pmcid: 16862117
Wang, J. T., Kong, D., Hoerner, C. R., Loncarek, J. & Stearns, T. Centriole triplet microtubules are required for stable centriole formation and inheritance in human cells. Elife 6, 29061 (2017).
Izquierdo, D., Wang, W.-J., Uryu, K. & Tsou, M.-F. B. Stabilization of cartwheel-less centrioles for duplication requires CEP295-mediated centriole-to-centrosome conversion. Cell Rep. 8, 957–965 (2014).
pubmed: 25131205
pmcid: 4152953
doi: 10.1016/j.celrep.2014.07.022
Fu, J. et al. Conserved molecular interactions in centriole-to-centrosome conversion. Nat. Cell Biol. 18, 87–99 (2016).
pubmed: 26595382
doi: 10.1038/ncb3274
pmcid: 26595382
Tsuchiya, Y., Yoshiba, S., Gupta, A., Watanabe, K. & Kitagawa, D. Cep295 is a conserved scaffold protein required for generation of a bona fide mother centriole. Nat. Commun. 7, 12567 (2016).
pubmed: 27562453
pmcid: 5007451
doi: 10.1038/ncomms12567
Wang, W.-J. et al. De novo centriole formation in human cells is error-prone and does not require SAS-6 self-assembly. Elife 4, 1054–1061 (2015).
Gilmore, E. C. & Walsh, C. A. Genetic causes of microcephaly and lessons for neuronal development. Wiley Interdiscip. Rev. Dev. Biol. 2, 461–478 (2013).
pubmed: 24014418
doi: 10.1002/wdev.89
pmcid: 24014418
Bettencourt-Dias, M., Hildebrandt, F., Pellman, D., Woods, G. & Godinho, S. A. Centrosomes and cilia in human disease. Trends Genet. 27, 307–315 (2011).
pubmed: 21680046
pmcid: 3144269
doi: 10.1016/j.tig.2011.05.004
Godinho, S. A. & Pellman, D. Causes and consequences of centrosome abnormalities in cancer. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 369, 20130467 (2014).
Jakobsen, L. et al. Novel asymmetrically localizing components of human centrosomes identified by complementary proteomics methods. EMBO J. 30, 1520–1535 (2011).
pubmed: 21399614
pmcid: 3102290
doi: 10.1038/emboj.2011.63
Blomen, V. A. et al. Gene essentiality and synthetic lethality in haploid human cells. Science 350, 1092–1096 (2015).
pubmed: 26472760
doi: 10.1126/science.aac7557
Dai, Y. et al. Characterization of the oncogenic function of centromere protein F in hepatocellular carcinoma. Biochem. Biophys. Res. Commun. 436, 711–718 (2013).
pubmed: 23791740
doi: 10.1016/j.bbrc.2013.06.021
Graser, S. et al. Cep164, a novel centriole appendage protein required for primary cilium formation. J. Cell Biol. 179, 321–330 (2007).
pubmed: 17954613
pmcid: 2064767
doi: 10.1083/jcb.200707181
Spektor, A., Tsang, W. Y., Khoo, D. & Dynlacht, B. D. Cep97 and CP110 suppress a cilia assembly program. Cell 130, 678–690 (2007).
pubmed: 17719545
doi: 10.1016/j.cell.2007.06.027
Ran, F. A. et al. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8, 2281–2308 (2013).
pubmed: 24157548
pmcid: 3969860
doi: 10.1038/nprot.2013.143
Panic, M., Hata, S., Neuner, A. & Schiebel, E. The centrosomal linker and microtubules provide dual levels of spatial coordination of centrosomes. PLoS Genet. 11, e1005243 (2015).
pubmed: 26001056
pmcid: 4441491
doi: 10.1371/journal.pgen.1005243
Hatch, E. M., Kulukian, A., Holland, A. J., Cleveland, D. W. & Stearns, T. Cep152 interacts with Plk4 and is required for centriole duplication. J. Cell Biol. 191, 721–729 (2010).
pubmed: 21059850
pmcid: 2983069
doi: 10.1083/jcb.201006049
Cizmecioglu, O. et al. Cep152 acts as a scaffold for recruitment of Plk4 and CPAP to the centrosome. J. Cell Biol. 191, 731–739 (2010).
pubmed: 21059844
pmcid: 2983070
doi: 10.1083/jcb.201007107
Finn, R. D. et al. Pfam: The protein families database. Nucleic Acids Research 42, 222–230 (2014).
Venoux, M. et al. Poc1A and Poc1B act together in human cells to ensure centriole integrity. J. Cell Sci. 126, 163–175 (2013).
pubmed: 23015594
pmcid: 3603514
doi: 10.1242/jcs.111203
Hayashi, I. & Ikura, M. Crystal structure of the amino-terminal microtubule-binding domain of end-binding protein 1 (EB1). J. Biol. Chem. 278, 36430–36434 (2003).
pubmed: 12857735
doi: 10.1074/jbc.M305773200
pmcid: 12857735
Plk4-induced centriole biogenesis in human cells. Dev. Cell 13, 190–202 (2007).
Bobinnec, Y. et al. Glutamylation of centriole and cytoplasmic tubulin in proliferating non-neuronal cells. Cell Motil. Cytoskelet. 39, 223–232 (1998).
doi: 10.1002/(SICI)1097-0169(1998)39:3<223::AID-CM5>3.0.CO;2-5
Janke, C. The tubulin code: molecular components, readout mechanisms, and functions. J. Cell Biol. 206, 461–472 (2014).
pubmed: 25135932
pmcid: 4137062
doi: 10.1083/jcb.201406055
Piperno, G., LeDizet, M. & Chang, X. J. Microtubules containing acetylated alpha-tubulin in mammalian cells in culture. J. Cell Biol. 104, 289–302 (1987).
pubmed: 2879846
doi: 10.1083/jcb.104.2.289
pmcid: 2879846
Giordano, T. et al. Loss of the deglutamylase CCP5 perturbs multiple steps of spermatogenesis and leads to male infertility. J. Cell Sci. 132, jcs226951 (2019).
pubmed: 30635446
doi: 10.1242/jcs.226951
pmcid: 30635446
Gambarotto, D. et al. Imaging cellular ultrastructures using expansion microscopy (U-ExM). Nat. Methods 16, 71–74 (2019).
pubmed: 30559430
doi: 10.1038/s41592-018-0238-1
Dutcher, S. K. & Trabuco, E. C. The UNI3 gene is required for assembly of basal bodies of Chlamydomonas and encodes delta-tubulin, a new member of the tubulin superfamily. Mol. Biol. Cell 9, 1293–1308 (1998).
pubmed: 9614175
pmcid: 25351
doi: 10.1091/mbc.9.6.1293
Dutcher, S. K., Morrissette, N. S., Preble, A. M., Rackley, C. & Stanga, J. ε-Tubulin is an essential component of the centriole. Mol. Biol. Cell 13, 3859–3869 (2002).
pubmed: 12429830
pmcid: 133598
doi: 10.1091/mbc.e02-04-0205
Gadelha, C. Basal body and flagellum mutants reveal a rotational constraint of the central pair microtubules in the axonemes of trypanosomes. J. Cell Sci. 119, 2405–2413 (2006).
pubmed: 16720646
doi: 10.1242/jcs.02969
pmcid: 16720646
Garreau de Loubresse, N., Ruiz, F., Beisson, J. & Klotz, C. Role of delta-tubulin and the C-tubule in assembly of Paramecium basal bodies. BMC Cell Biol. 2, 4 (2001).
pubmed: 11255590
pmcid: 29069
doi: 10.1186/1471-2121-2-4
Goodenough, U. W. & StClair, H. S. BALD-2: a mutation affecting the formation of doublet and triplet sets of microtubules in Chlamydomonas reinhardtii. J. Cell Biol. 66, 480–491 (1975).
pubmed: 1158970
doi: 10.1083/jcb.66.3.480
pmcid: 1158970
Dupuis-Williams, P. et al. Functional role of epsilon-tubulin in the assembly of the centriolar microtubule scaffold. J. Cell Biol. 158, 1183–1193 (2002).
pubmed: 12356863
pmcid: 2173240
doi: 10.1083/jcb.200205028
Saurya, S. et al. Drosophila Ana1 is required for centrosome assembly and centriole elongation. J. Cell Sci. 129, 2514–2525 (2016).
pubmed: 27206860
pmcid: 4958303
doi: 10.1242/jcs.186460
Chang, C.-W., Hsu, W.-B., Tsai, J.-J., Tang, C.-J. C. & Tang, T. K. CEP295 interacts with microtubules and is required for centriole elongation. J. Cell Sci. 129, 2501–2513 (2016).
pubmed: 27185865
pmcid: 4958302
doi: 10.1242/jcs.186338
Bayless, B. A., Giddings, T. H., Winey, M., Pearson, C. G. & Pearson, C. G. Bld10/Cep135 stabilizes basal bodies to resist cilia-generated forces. Mol. Biol. Cell 23, 4820–4832 (2012).
pubmed: 23115304
pmcid: 3521689
doi: 10.1091/mbc.e12-08-0577
Watanabe, K., Takao, D., Ito, K. K., Takahashi, M. & Kitagawa, D. The Cep57-pericentrin module organizes PCM expansion and centriole engagement. Nat. Commun. 10, 931 (2019).
pubmed: 30804344
pmcid: 6389942
doi: 10.1038/s41467-019-08862-2
Kim, T. S. et al. Molecular architecture of a cylindrical self-assembly at human centrosomes. Nat. Commun. 10, 1151 (2019).
Gottardo, M., Callaini, G. & Riparbelli, M. G. The Drosophila centriole – conversion of doublets into triplets within the stem cell niche. J. Cell Sci. 128, 2437–2442 (2015).
pubmed: 26092937
doi: 10.1242/jcs.172627
pmcid: 26092937
Jo, K. H. et al. Poc1B and Sas-6 function together during the atypical centriole formation in Drosophila melanogaster. Cells 8, 841 (2019).
pmcid: 6721650
doi: 10.3390/cells8080841
Khire, A. et al. Centriole remodeling during spermiogenesis in Drosophila. Curr. Biol. 26, 3183–3189 (2016).
pubmed: 28094036
pmcid: 5245371
doi: 10.1016/j.cub.2016.07.006
Blachon, S. et al. A proximal centriole-like structure is present in drosophila spermatids and can serve as a model to study centriole duplication. Genetics 182, 133–144 (2009).
pubmed: 19293139
pmcid: 2674812
doi: 10.1534/genetics.109.101709
Boersema, P. J., Raijmakers, R., Lemeer, S., Mohammed, S. & Heck, A. J. R. Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics. Nat. Protoc. 4, 484–494 (2009).
pubmed: 19300442
doi: 10.1038/nprot.2009.21
pmcid: 19300442
Rappsilber, J., Mann, M. & Ishihama, Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat. Protoc. 2, 1896–1906 (2007).
pubmed: 17703201
doi: 10.1038/nprot.2007.261
pmcid: 17703201
Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).
doi: 10.1038/nbt.1511
Gogendeau, D., Guichard, P. & Tassin, A.-M. Purification of centrosomes from mammalian cell lines. in. Methods Cell Biol. 129, 171–189 (2015).
pubmed: 26175439
doi: 10.1016/bs.mcb.2015.03.004
pmcid: 26175439
Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005).
pubmed: 16182563
doi: 10.1016/j.jsb.2005.07.007
pmcid: 16182563
Perez-Riverol, Y. et al. The PRIDE database and related tools and resources in 2019: Improving support for quantification data. Nucleic Acids Res. 47, D442–D450 (2019).
doi: 10.1093/nar/gky1106