CEP44 ensures the formation of bona fide centriole wall, a requirement for the centriole-to-centrosome conversion.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
14 02 2020
Historique:
received: 25 06 2019
accepted: 30 01 2020
entrez: 16 2 2020
pubmed: 16 2 2020
medline: 2 6 2020
Statut: epublish

Résumé

Centrosomes are essential organelles with functions in microtubule organization that duplicate once per cell cycle. The first step of centrosome duplication is the daughter centriole formation followed by the pericentriolar material recruitment to this centriole. This maturation step was termed centriole-to-centrosome conversion. It was proposed that CEP295-dependent recruitment of pericentriolar proteins drives centriole conversion. Here we show, based on the analysis of proteins that promote centriole biogenesis, that the developing centriole structure helps drive centriole conversion. Depletion of the luminal centriole protein CEP44 that binds to the A-microtubules and interacts with POC1B affecting centriole structure and centriole conversion, despite CEP295 binding to centrioles. Impairment of POC1B, TUBE1 or TUBD1, which disturbs integrity of centriole microtubules, also prevents centriole-to-centrosome conversion. We propose that the CEP295, CEP44, POC1B, TUBE1 and TUBD1 centriole biogenesis pathway that functions in the centriole lumen and on the cytoplasmic side is essential for the centriole-to-centrosome conversion.

Identifiants

pubmed: 32060285
doi: 10.1038/s41467-020-14767-2
pii: 10.1038/s41467-020-14767-2
pmc: PMC7021698
doi:

Substances chimiques

CEP44 protein, human 0
Cell Cycle Proteins 0
POC1B protein, human 0
TUBD1 protein, human 0
Tubulin 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

903

Références

Bornens, M. The centrosome in cells and organisms. Science. 335, 422–426 (2012).
pubmed: 22282802 doi: 10.1126/science.1209037 pmcid: 22282802
Conduit, P. T., Wainman, A. & Raff, J. W. Centrosome function and assembly in animal cells. Nat. Rev. Mol. Cell Biol. 16, 611–624 (2015).
pubmed: 26373263 doi: 10.1038/nrm4062 pmcid: 26373263
Azimzadeh, J. & Marshall, W. F. Building the centriole. Curr. Biol. 20, R816–R825 (2010).
pubmed: 20869612 pmcid: 2956124 doi: 10.1016/j.cub.2010.08.010
Fu, J. & Glover, D. M. Structured illumination of the interface between centriole and peri-centriolar material. Open Biol. 2, 120104 (2012).
pubmed: 22977736 pmcid: 3438536 doi: 10.1098/rsob.120104
Lawo, S., Hasegan, M., Gupta, G. D. & Pelletier, L. Subdiffraction imaging of centrosomes reveals higher-order organizational features of pericentriolar material. Nat. Cell Biol. 14, 1148–1158 (2012).
pubmed: 23086237 doi: 10.1038/ncb2591 pmcid: 23086237
Mennella, V. et al. Subdiffraction-resolution fluorescence microscopy reveals a domain of the centrosome critical for pericentriolar material organization. Nat. Cell Biol. 14, 1159–1168 (2012).
pubmed: 23086239 pmcid: 3767400 doi: 10.1038/ncb2597
Dictenberg, J. B. et al. Pericentrin and γ-tubulin form a protein complex and are organized into a novel lattice at the centrosome. J. Cell Biol. 141, 163–174 (1998).
pubmed: 9531556 pmcid: 2132723 doi: 10.1083/jcb.141.1.163
Zimmerman, W. C., Sillibourne, J., Rosa, J. & Doxsey, S. J. Mitosis-specific anchoring of γ tubulin complexes by pericentrin controls spindle organization and mitotic entry. Mol. Biol. Cell 15, 3642–3657 (2004).
pubmed: 15146056 pmcid: 491825 doi: 10.1091/mbc.e03-11-0796
Woodruff, J. B., Wueseke, O. & Hyman, A. A. Pericentriolar material structure and dynamics. Philos. Trans. R. Soc. Lond. B Biol. Sci. 369, 20130459 (2014).
Dzhindzhev, N. S. et al. Plk4 phosphorylates Ana2 to trigger Sas6 recruitment and procentriole formation. Curr. Biol. 24, 2526–2532 (2014).
pubmed: 25264260 pmcid: 4229625 doi: 10.1016/j.cub.2014.08.061
Gönczy, P. Towards a molecular architecture of centriole assembly. Nat. Rev. Mol. Cell Biol. 13, 425–435 (2012).
pubmed: 22691849 doi: 10.1038/nrm3373 pmcid: 22691849
Guichard, P. et al. Native architecture of the centriole proximal region reveals features underlying Its 9-fold radial symmetry. Curr. Biol. 23, 1620–1628 (2013).
pubmed: 23932403 doi: 10.1016/j.cub.2013.06.061 pmcid: 23932403
Tsou, M.-F. B. & Stearns, T. Mechanism limiting centrosome duplication to once per cell cycle. Nature 442, 947–951 (2006).
pubmed: 16862117 doi: 10.1038/nature04985 pmcid: 16862117
Wang, J. T., Kong, D., Hoerner, C. R., Loncarek, J. & Stearns, T. Centriole triplet microtubules are required for stable centriole formation and inheritance in human cells. Elife 6, 29061 (2017).
Izquierdo, D., Wang, W.-J., Uryu, K. & Tsou, M.-F. B. Stabilization of cartwheel-less centrioles for duplication requires CEP295-mediated centriole-to-centrosome conversion. Cell Rep. 8, 957–965 (2014).
pubmed: 25131205 pmcid: 4152953 doi: 10.1016/j.celrep.2014.07.022
Fu, J. et al. Conserved molecular interactions in centriole-to-centrosome conversion. Nat. Cell Biol. 18, 87–99 (2016).
pubmed: 26595382 doi: 10.1038/ncb3274 pmcid: 26595382
Tsuchiya, Y., Yoshiba, S., Gupta, A., Watanabe, K. & Kitagawa, D. Cep295 is a conserved scaffold protein required for generation of a bona fide mother centriole. Nat. Commun. 7, 12567 (2016).
pubmed: 27562453 pmcid: 5007451 doi: 10.1038/ncomms12567
Wang, W.-J. et al. De novo centriole formation in human cells is error-prone and does not require SAS-6 self-assembly. Elife 4, 1054–1061 (2015).
Gilmore, E. C. & Walsh, C. A. Genetic causes of microcephaly and lessons for neuronal development. Wiley Interdiscip. Rev. Dev. Biol. 2, 461–478 (2013).
pubmed: 24014418 doi: 10.1002/wdev.89 pmcid: 24014418
Bettencourt-Dias, M., Hildebrandt, F., Pellman, D., Woods, G. & Godinho, S. A. Centrosomes and cilia in human disease. Trends Genet. 27, 307–315 (2011).
pubmed: 21680046 pmcid: 3144269 doi: 10.1016/j.tig.2011.05.004
Godinho, S. A. & Pellman, D. Causes and consequences of centrosome abnormalities in cancer. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 369, 20130467 (2014).
Jakobsen, L. et al. Novel asymmetrically localizing components of human centrosomes identified by complementary proteomics methods. EMBO J. 30, 1520–1535 (2011).
pubmed: 21399614 pmcid: 3102290 doi: 10.1038/emboj.2011.63
Blomen, V. A. et al. Gene essentiality and synthetic lethality in haploid human cells. Science 350, 1092–1096 (2015).
pubmed: 26472760 doi: 10.1126/science.aac7557
Dai, Y. et al. Characterization of the oncogenic function of centromere protein F in hepatocellular carcinoma. Biochem. Biophys. Res. Commun. 436, 711–718 (2013).
pubmed: 23791740 doi: 10.1016/j.bbrc.2013.06.021
Graser, S. et al. Cep164, a novel centriole appendage protein required for primary cilium formation. J. Cell Biol. 179, 321–330 (2007).
pubmed: 17954613 pmcid: 2064767 doi: 10.1083/jcb.200707181
Spektor, A., Tsang, W. Y., Khoo, D. & Dynlacht, B. D. Cep97 and CP110 suppress a cilia assembly program. Cell 130, 678–690 (2007).
pubmed: 17719545 doi: 10.1016/j.cell.2007.06.027
Ran, F. A. et al. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8, 2281–2308 (2013).
pubmed: 24157548 pmcid: 3969860 doi: 10.1038/nprot.2013.143
Panic, M., Hata, S., Neuner, A. & Schiebel, E. The centrosomal linker and microtubules provide dual levels of spatial coordination of centrosomes. PLoS Genet. 11, e1005243 (2015).
pubmed: 26001056 pmcid: 4441491 doi: 10.1371/journal.pgen.1005243
Hatch, E. M., Kulukian, A., Holland, A. J., Cleveland, D. W. & Stearns, T. Cep152 interacts with Plk4 and is required for centriole duplication. J. Cell Biol. 191, 721–729 (2010).
pubmed: 21059850 pmcid: 2983069 doi: 10.1083/jcb.201006049
Cizmecioglu, O. et al. Cep152 acts as a scaffold for recruitment of Plk4 and CPAP to the centrosome. J. Cell Biol. 191, 731–739 (2010).
pubmed: 21059844 pmcid: 2983070 doi: 10.1083/jcb.201007107
Finn, R. D. et al. Pfam: The protein families database. Nucleic Acids Research 42, 222–230 (2014).
Venoux, M. et al. Poc1A and Poc1B act together in human cells to ensure centriole integrity. J. Cell Sci. 126, 163–175 (2013).
pubmed: 23015594 pmcid: 3603514 doi: 10.1242/jcs.111203
Hayashi, I. & Ikura, M. Crystal structure of the amino-terminal microtubule-binding domain of end-binding protein 1 (EB1). J. Biol. Chem. 278, 36430–36434 (2003).
pubmed: 12857735 doi: 10.1074/jbc.M305773200 pmcid: 12857735
Plk4-induced centriole biogenesis in human cells. Dev. Cell 13, 190–202 (2007).
Bobinnec, Y. et al. Glutamylation of centriole and cytoplasmic tubulin in proliferating non-neuronal cells. Cell Motil. Cytoskelet. 39, 223–232 (1998).
doi: 10.1002/(SICI)1097-0169(1998)39:3<223::AID-CM5>3.0.CO;2-5
Janke, C. The tubulin code: molecular components, readout mechanisms, and functions. J. Cell Biol. 206, 461–472 (2014).
pubmed: 25135932 pmcid: 4137062 doi: 10.1083/jcb.201406055
Piperno, G., LeDizet, M. & Chang, X. J. Microtubules containing acetylated alpha-tubulin in mammalian cells in culture. J. Cell Biol. 104, 289–302 (1987).
pubmed: 2879846 doi: 10.1083/jcb.104.2.289 pmcid: 2879846
Giordano, T. et al. Loss of the deglutamylase CCP5 perturbs multiple steps of spermatogenesis and leads to male infertility. J. Cell Sci. 132, jcs226951 (2019).
pubmed: 30635446 doi: 10.1242/jcs.226951 pmcid: 30635446
Gambarotto, D. et al. Imaging cellular ultrastructures using expansion microscopy (U-ExM). Nat. Methods 16, 71–74 (2019).
pubmed: 30559430 doi: 10.1038/s41592-018-0238-1
Dutcher, S. K. & Trabuco, E. C. The UNI3 gene is required for assembly of basal bodies of Chlamydomonas and encodes delta-tubulin, a new member of the tubulin superfamily. Mol. Biol. Cell 9, 1293–1308 (1998).
pubmed: 9614175 pmcid: 25351 doi: 10.1091/mbc.9.6.1293
Dutcher, S. K., Morrissette, N. S., Preble, A. M., Rackley, C. & Stanga, J. ε-Tubulin is an essential component of the centriole. Mol. Biol. Cell 13, 3859–3869 (2002).
pubmed: 12429830 pmcid: 133598 doi: 10.1091/mbc.e02-04-0205
Gadelha, C. Basal body and flagellum mutants reveal a rotational constraint of the central pair microtubules in the axonemes of trypanosomes. J. Cell Sci. 119, 2405–2413 (2006).
pubmed: 16720646 doi: 10.1242/jcs.02969 pmcid: 16720646
Garreau de Loubresse, N., Ruiz, F., Beisson, J. & Klotz, C. Role of delta-tubulin and the C-tubule in assembly of Paramecium basal bodies. BMC Cell Biol. 2, 4 (2001).
pubmed: 11255590 pmcid: 29069 doi: 10.1186/1471-2121-2-4
Goodenough, U. W. & StClair, H. S. BALD-2: a mutation affecting the formation of doublet and triplet sets of microtubules in Chlamydomonas reinhardtii. J. Cell Biol. 66, 480–491 (1975).
pubmed: 1158970 doi: 10.1083/jcb.66.3.480 pmcid: 1158970
Dupuis-Williams, P. et al. Functional role of epsilon-tubulin in the assembly of the centriolar microtubule scaffold. J. Cell Biol. 158, 1183–1193 (2002).
pubmed: 12356863 pmcid: 2173240 doi: 10.1083/jcb.200205028
Saurya, S. et al. Drosophila Ana1 is required for centrosome assembly and centriole elongation. J. Cell Sci. 129, 2514–2525 (2016).
pubmed: 27206860 pmcid: 4958303 doi: 10.1242/jcs.186460
Chang, C.-W., Hsu, W.-B., Tsai, J.-J., Tang, C.-J. C. & Tang, T. K. CEP295 interacts with microtubules and is required for centriole elongation. J. Cell Sci. 129, 2501–2513 (2016).
pubmed: 27185865 pmcid: 4958302 doi: 10.1242/jcs.186338
Bayless, B. A., Giddings, T. H., Winey, M., Pearson, C. G. & Pearson, C. G. Bld10/Cep135 stabilizes basal bodies to resist cilia-generated forces. Mol. Biol. Cell 23, 4820–4832 (2012).
pubmed: 23115304 pmcid: 3521689 doi: 10.1091/mbc.e12-08-0577
Watanabe, K., Takao, D., Ito, K. K., Takahashi, M. & Kitagawa, D. The Cep57-pericentrin module organizes PCM expansion and centriole engagement. Nat. Commun. 10, 931 (2019).
pubmed: 30804344 pmcid: 6389942 doi: 10.1038/s41467-019-08862-2
Kim, T. S. et al. Molecular architecture of a cylindrical self-assembly at human centrosomes. Nat. Commun. 10, 1151 (2019).
Gottardo, M., Callaini, G. & Riparbelli, M. G. The Drosophila centriole – conversion of doublets into triplets within the stem cell niche. J. Cell Sci. 128, 2437–2442 (2015).
pubmed: 26092937 doi: 10.1242/jcs.172627 pmcid: 26092937
Jo, K. H. et al. Poc1B and Sas-6 function together during the atypical centriole formation in Drosophila melanogaster. Cells 8, 841 (2019).
pmcid: 6721650 doi: 10.3390/cells8080841
Khire, A. et al. Centriole remodeling during spermiogenesis in Drosophila. Curr. Biol. 26, 3183–3189 (2016).
pubmed: 28094036 pmcid: 5245371 doi: 10.1016/j.cub.2016.07.006
Blachon, S. et al. A proximal centriole-like structure is present in drosophila spermatids and can serve as a model to study centriole duplication. Genetics 182, 133–144 (2009).
pubmed: 19293139 pmcid: 2674812 doi: 10.1534/genetics.109.101709
Boersema, P. J., Raijmakers, R., Lemeer, S., Mohammed, S. & Heck, A. J. R. Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics. Nat. Protoc. 4, 484–494 (2009).
pubmed: 19300442 doi: 10.1038/nprot.2009.21 pmcid: 19300442
Rappsilber, J., Mann, M. & Ishihama, Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat. Protoc. 2, 1896–1906 (2007).
pubmed: 17703201 doi: 10.1038/nprot.2007.261 pmcid: 17703201
Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008).
doi: 10.1038/nbt.1511
Gogendeau, D., Guichard, P. & Tassin, A.-M. Purification of centrosomes from mammalian cell lines. in. Methods Cell Biol. 129, 171–189 (2015).
pubmed: 26175439 doi: 10.1016/bs.mcb.2015.03.004 pmcid: 26175439
Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005).
pubmed: 16182563 doi: 10.1016/j.jsb.2005.07.007 pmcid: 16182563
Perez-Riverol, Y. et al. The PRIDE database and related tools and resources in 2019: Improving support for quantification data. Nucleic Acids Res. 47, D442–D450 (2019).
doi: 10.1093/nar/gky1106

Auteurs

Enrico S Atorino (ES)

Zentrum für Molekulare Biologie, Universität Heidelberg, DKFZ-ZMBH Allianz, 69120, Heidelberg, Germany.

Shoji Hata (S)

Zentrum für Molekulare Biologie, Universität Heidelberg, DKFZ-ZMBH Allianz, 69120, Heidelberg, Germany.

Charlotta Funaya (C)

Electron Microscopy Core Facility, Universität Heidelberg, 69120, Heidelberg, Germany.

Annett Neuner (A)

Zentrum für Molekulare Biologie, Universität Heidelberg, DKFZ-ZMBH Allianz, 69120, Heidelberg, Germany.

Elmar Schiebel (E)

Zentrum für Molekulare Biologie, Universität Heidelberg, DKFZ-ZMBH Allianz, 69120, Heidelberg, Germany. e.schiebel@zmbh.uni-heidelberg.de.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH