Understanding the chemistry of the artificial electron acceptors PES, PMS, DCPIP and Wurster's Blue in methanol dehydrogenase assays.
Coupled assay
DCPIP
EPR spectroscopy
Electron acceptors
Enzymatic assay
Methanol dehydrogenase
PES
PMS
UV–Vis spectroscopy
Wurster’s blue
Journal
Journal of biological inorganic chemistry : JBIC : a publication of the Society of Biological Inorganic Chemistry
ISSN: 1432-1327
Titre abrégé: J Biol Inorg Chem
Pays: Germany
ID NLM: 9616326
Informations de publication
Date de publication:
03 2020
03 2020
Historique:
received:
01
06
2019
accepted:
17
12
2019
pubmed:
16
2
2020
medline:
30
4
2021
entrez:
16
2
2020
Statut:
ppublish
Résumé
Methanol dehydrogenases (MDH) have recently taken the spotlight with the discovery that a large portion of these enzymes in nature utilize lanthanides in their active sites. The kinetic parameters of these enzymes are determined with a spectrophotometric assay first described by Anthony and Zatman 55 years ago. This artificial assay uses alkylated phenazines, such as phenazine ethosulfate (PES) or phenazine methosulfate (PMS), as primary electron acceptors (EAs) and the electron transfer is further coupled to a dye. However, many groups have reported problems concerning the bleaching of the assay mixture in the absence of MDH and the reproducibility of those assays. Hence, the comparison of kinetic data among MDH enzymes of different species is often cumbersome. Using mass spectrometry, UV-Vis and electron paramagnetic resonance (EPR) spectroscopy, we show that the side reactions of the assay mixture are mainly due to the degradation of assay components. Light-induced demethylation (yielding formaldehyde and phenazine in the case of PMS) or oxidation of PES or PMS as well as a reaction with assay components (ammonia, cyanide) can occur. We suggest here a protocol to avoid these side reactions. Further, we describe a modified synthesis protocol for obtaining the alternative electron acceptor, Wurster's blue (WB), which serves both as EA and dye. The investigation of two lanthanide-dependent methanol dehydrogenases from Methylorubrum extorquens AM1 and Methylacidiphilum fumariolicum SolV with WB, along with handling recommendations, is presented. Lanthanide-dependent methanol dehydrogenases. Understanding the chemistry of artificial electron acceptors and redox dyes can yield more reproducible results.
Identifiants
pubmed: 32060650
doi: 10.1007/s00775-020-01752-9
pii: 10.1007/s00775-020-01752-9
pmc: PMC7082304
doi:
Substances chimiques
Phenazines
0
5-ethylphenazine
10510-77-7
Methylphenazonium Methosulfate
299-11-6
2,6-Dichloroindophenol
C35QN2Z58B
Alcohol Oxidoreductases
EC 1.1.-
alcohol dehydrogenase (acceptor)
EC 1.1.2.8
Tetramethylphenylenediamine
P4P3AC32ZB
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
199-212Références
J Biol Chem. 2015 Oct 30;290(44):26404-11
pubmed: 26354429
J Gen Microbiol. 1983 Oct;129(10):2979-83
pubmed: 6317794
J Bacteriol. 2016 Oct 21;198(22):3109-3118
pubmed: 27573017
Environ Microbiol. 2014 Jan;16(1):255-64
pubmed: 24034209
Chembiochem. 2018 Mar 11;:
pubmed: 29524328
Subcell Biochem. 2000;35:73-117
pubmed: 11192736
Chembiochem. 2019 Sep 16;20(18):2360-2372
pubmed: 31017712
Biochim Biophys Acta Proteins Proteom. 2019 Jun;1867(6):595-603
pubmed: 30954577
Curr Opin Chem Biol. 2019 Apr;49:39-44
pubmed: 30308436
Biochem J. 2005 May 15;388(Pt 1):123-33
pubmed: 15617516
J Biol Chem. 1956 Feb;218(2):701-6
pubmed: 13295224
Appl Environ Microbiol. 2018 Mar 1;84(6):
pubmed: 29305514
World J Microbiol Biotechnol. 2016 Aug;32(8):138
pubmed: 27357406
Environ Microbiol. 2014 Jun;16(6):1867-78
pubmed: 24650084
Trends Microbiol. 2018 Aug;26(8):703-714
pubmed: 29471983
Methods Enzymol. 1990;188:298-303
pubmed: 2177822
Biochim Biophys Acta. 1992 Feb 13;1119(1):97-106
pubmed: 1311606
Anal Biochem. 1979 Oct 15;99(1):112-7
pubmed: 231392
Biochim Biophys Acta. 1985 Oct 30;847(1):96-100
pubmed: 4052463
Biochim Biophys Acta. 1964 Apr 4;86:194-7
pubmed: 14166862
Microbiology (Reading). 2010 Aug;156(Pt 8):2575-2586
pubmed: 20447995
Biochem J. 1967 Sep;104(3):953-9
pubmed: 6058112
Biochemistry. 1993 Apr 27;32(16):4362-8
pubmed: 8386543
Chemistry. 2019 Jul 2;25(37):8760-8768
pubmed: 30908783
Biochem Mol Biol Educ. 2004 Jan;32(1):39-44
pubmed: 21706687
Talanta. 1992 Jul;39(7):863-8
pubmed: 18965463
J Basic Microbiol. 1997;37(4):269-79
pubmed: 9323867
Anal Biochem. 1988 Aug 15;173(1):111-5
pubmed: 2847586
mBio. 2018 Mar 27;9(2):
pubmed: 29588409
Appl Environ Microbiol. 2015 Feb;81(4):1442-51
pubmed: 25527536
Environ Microbiol Rep. 2009 Oct;1(5):293-306
pubmed: 23765882
Biochemistry. 2003 Apr 8;42(13):3966-78
pubmed: 12667088
Appl Microbiol Biotechnol. 2014;98(14):6163-83
pubmed: 24816778
Eur J Biochem. 1988 Jun 1;174(2):331-8
pubmed: 3289922
PLoS One. 2011;6(10):e26217
pubmed: 22028835
Proteins. 1998 Nov 1;33(2):159-66
pubmed: 9779785
Clin Chem. 1986 Jun;32(6):1004-6
pubmed: 3708799
Biochem J. 1980 Apr 1;187(1):213-9
pubmed: 6996671
Biochem J. 1964 Sep;92(3):614-21
pubmed: 4378696
J Biol Inorg Chem. 2018 Oct;23(7):1037-1047
pubmed: 30132076
Front Microbiol. 2018 Jun 26;9:1366
pubmed: 29997591
J Biol Chem. 1963 Dec;238:4032-6
pubmed: 14086742
Inorg Chem. 2018 Jun 18;57(12):7015-7024
pubmed: 29856613
Proc Natl Acad Sci U S A. 2004 Nov 9;101(45):15887-92
pubmed: 15520392
mSphere. 2018 Jan 24;3(1):
pubmed: 29404411
Science. 2015 May 22;348(6237):862-3
pubmed: 25999492
J Bacteriol. 2016 Mar 31;198(8):1250-9
pubmed: 26833413
J Biol Chem. 1958 Oct;233(4):843-52
pubmed: 13587504
Angew Chem Int Ed Engl. 2019 Sep 9;58(37):12795-12802
pubmed: 31021478
ISME J. 2019 Aug;13(8):2005-2017
pubmed: 30952993