Primrose syndrome: a phenotypic comparison of patients with a ZBTB20 missense variant versus a 3q13.31 microdeletion including ZBTB20.
Abnormalities, Multiple
/ genetics
Adolescent
Calcinosis
/ genetics
Child
Child, Preschool
Chromosome Deletion
Chromosomes, Human, Pair 3
/ genetics
Corpus Callosum
/ diagnostic imaging
Ear Diseases
/ genetics
Humans
Intellectual Disability
/ genetics
Muscular Atrophy
/ genetics
Mutation, Missense
Nerve Tissue Proteins
/ genetics
Phenotype
Transcription Factors
/ genetics
Journal
European journal of human genetics : EJHG
ISSN: 1476-5438
Titre abrégé: Eur J Hum Genet
Pays: England
ID NLM: 9302235
Informations de publication
Date de publication:
08 2020
08 2020
Historique:
received:
29
01
2019
accepted:
03
12
2019
revised:
14
11
2019
pubmed:
20
2
2020
medline:
2
6
2021
entrez:
20
2
2020
Statut:
ppublish
Résumé
Primrose syndrome is characterized by variable intellectual deficiency, behavior disorders, facial features with macrocephaly, and a progressive phenotype with hearing loss and ectopic calcifications, distal muscle wasting, and contractures. In 2014, ZBTB20 variants were identified as responsible for this syndrome. Indeed, ZBTB20 plays an important role in cognition, memory, learning processes, and has a transcription repressive effect on numerous genes. A more severe phenotype was discussed in patients with missense single nucleotide variants than in those with large deletions. Here, we report on the clinical and molecular results of 14 patients: 6 carrying ZBTB20 missense SNVs, 1 carrying an early truncating indel, and 7 carrying 3q13.31 deletions, recruited through the AnDDI-Rares network. We compared their phenotypes and reviewed the data of the literature, in order to establish more powerful phenotype-genotype correlations. All 57 patients presented mild-to-severe ID and/or a psychomotor delay. Facial features were similar with macrocephaly, prominent forehead, downslanting palpebral fissures, ptosis, and large ears. Hearing loss was far more frequent in patients with missense SNVs (p = 0.002), ectopic calcification, progressive muscular wasting, and contractures were observed only in patients with missense SNVs (p nonsignificant). Corpus callosum dysgenesis (p = 0.00004), hypothyroidism (p = 0.047), and diabetes were also more frequent in this group. However, the median age was 9.4 years in patients with deletions and truncating variant compared with 15.1 years in those with missense SNVs. Longer follow-up will be necessary to determine whether the phenotype of patients with deletions is also progressive.
Identifiants
pubmed: 32071410
doi: 10.1038/s41431-020-0582-3
pii: 10.1038/s41431-020-0582-3
pmc: PMC7382504
doi:
Substances chimiques
Nerve Tissue Proteins
0
Transcription Factors
0
ZBTB20 protein, human
0
Types de publication
Case Reports
Journal Article
Research Support, Non-U.S. Gov't
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
1044-1055Subventions
Organisme : Conseil régional de Bourgogne-Franche-Comté (Regional Council of Burgundy)
ID : PARI2016
Pays : International
Organisme : Conseil régional de Bourgogne-Franche-Comté (Regional Council of Burgundy)
ID : PARI2012
Pays : International
Références
Flore LA, Milunsky JM. Updates in the genetic evaluation of the child with global developmental delay or intellectual disability. Semin Pediatr Neurol. 2012;19:173–80.
doi: 10.1016/j.spen.2012.09.004
Cooper GM, Coe BP, Girirajan S, Rosenfeld JA, Vu TH, Baker C, et al. A copy number variation morbidity map of developmental delay. Nat Genet. 2015;43:838–46.
doi: 10.1038/ng.909
Retterer K, Juusola J, Cho MT, Vitazka P, Millan F, Gibellini F, et al. Clinical application of whole-exome sequencing across clinical indications. Genet Med. 2016;18:696–704.
doi: 10.1038/gim.2015.148
Chong JX, Buckingham KJ, Jhangiani SN, Boehm C, Sobreira N, Smith JD, et al. The genetic basis of mendelian phenotypes: discoveries, challenges and opportunities. Am J Hum Genet. 2015;97:199–215.
doi: 10.1016/j.ajhg.2015.06.009
Battisti C, Dotti MT, Cerase A, Rufa A, Sicurelli F, Scarpini C, et al. The Primrose syndrome with progressive neurological involvement and cerebral calcification. J Neurol. 2002;249:1466–8.
doi: 10.1007/s00415-002-0850-x
Dalal P, Leslie ND, Lindor NM, Gilbert DL, Espay AJ. Motor tics, stereotypies, and self-flagellation in primrose syndrome. Neurology. 2010;75:284–6.
doi: 10.1212/WNL.0b013e3181e8e754
Cordeddu V, Redeker B, Stellacci E, Jongejan A, Fragale A, Bradley TE, et al. Mutations in ZBTB20 cause Primrose syndrome. Nat Genet. 2014;46:815–7.
doi: 10.1038/ng.3035
Mattioli F, Piton A, Gérard B, Superti-Furga A, Mandel JL, Unger S. Novel de novo mutations in ZBTB20 in Primrose syndrome with congenital hypothyroidism. Am J Med Genet A. 2016;170:1626–9.
doi: 10.1002/ajmg.a.37645
Molin AM, Andrieux J, Koolen DA, Malan V, Carella M, Colleaux L, et al. A novel microdeletion syndrome at 3q13.31 characterised by developmental delay, postnatal overgrowth, hypoplastic male genitals, and characteristic facial features. J Med Genet. 2012;49:104–9.
doi: 10.1136/jmedgenet-2011-100534
Redin C, Gérard B, Lauer J, Herenger Y, Muller J, Quartier A, et al. Efficient strategy for the molecular diagnosis of intellectual disability using targeted high-throughput sequencing. J Med Genet. 2014;51:724–36.
doi: 10.1136/jmedgenet-2014-102554
Geoffroy V, Pizot C, Redin C, Piton A, Vasli N, Stoetzel C, et al. VaRank: a simple and powerful tool for ranking genetic variants. Peer J. 2015;3:e796.
doi: 10.7717/peerj.796
Thevenon J, Duffourd Y, Masurel-Paulet A, Lefebvre M, Feillet F, El Chehadeh-Djebbar S, et al. Diagnostic odyssey in severe neurodevelopmental disorders: toward clinical whole-exome sequencing as a first-line diagnostic test. Clin Genet. 2016;589:700–7.
doi: 10.1111/cge.12732
Alby C, Boutaud L, Bessières B, Serre V, Rio M, Cormier-Daire V, et al. Novel de novo ZBTB20 mutations in three cases with Primrose syndrome and constant corpus callosum anomalies. Am J Med Genet Part A. 2018;176A:1091–8.
doi: 10.1002/ajmg.a.38684
Casertano A, Fontana P, Hennekam RC, Tartaglia M, Genesio R, Dieber TB, et al. Alterations in metabolic patterns have a key role in diagnosis and progression of Primrose syndrome. Am J Med Genet A. 2017;173:1896–902.
doi: 10.1002/ajmg.a.38124
Koido K, Traks T, Balõtšev R, Eller T, Must A, Koks S, et al. Associations between LSAMP gene polymorphisms and major depressive disorder and panic disorder. Transl Psychiatry. 2012;2:e152.
doi: 10.1038/tp.2012.74
Crocq MA, Mant R, Asherson P, Williams J, Hode Y, Mayerova A, et al. Association between schizophrenia and homozygosity at the dopamine D3 receptor gene. J Med Genet. 1992;29:858–60.
doi: 10.1136/jmg.29.12.858
Lucotte G, Lagarde JP, Funalot B, Sokoloff P. Linkage with the Ser9Gly DRD3 polymorphism in essential tremor families. Clin Genet. 2006;69:437–40.
doi: 10.1111/j.1399-0004.2006.00600.x
Lowther C, Costain G, Melvin R, Stavropoulos DJ, Lionel AC, Marshall CR, et al. Adult expression of a 3q13.31 microdeletion. Mol Cytogenet. 2014;7:23.
doi: 10.1186/1755-8166-7-23
Mathijssen IB, van Hasselt-van der Velde J, Hennekam RC. Testicular cancer in a patient with Primrose syndrome. Eur J Med Genet. 2006;49:127–33.
doi: 10.1016/j.ejmg.2005.06.001
Vuillaume ML, Delrue MA, Naudion S, Toutain J, Fergelot P, Arveiler B, et al. Expanding the clinical phenotype at the 3q13.31 locus with a new case of microdeletion and first characterization of the reciprocal duplication. Mol Genet Metab. 2013;110:90–7.
doi: 10.1016/j.ymgme.2013.07.013
Carvalho DR, Speck-Martins CE. Additional features of unique Primrose syndrome phenotype. Am J Med Genet Part A. 2011;155:1379–83.
doi: 10.1002/ajmg.a.33955
Posmyk R, Leśniewicz R, Chorąży M, Wołczyński S. New case of Primrose syndrome with mild intellectual disability. Am J Med Genet A. 2011;155A:2838–40.
doi: 10.1002/ajmg.a.34257
Quintela I, Gomez-Guerrero L, Fernandez-Prieto M, Resches M, Barros F, Carracedo A, et al. Female patient with autistic disorder, intellectual disability, and co-morbid anxiety disorder: expanding the phenotype associated with the recurrent 3q13.2–q13.31 microdeletion. Am J Med Genet Part A. 2015;167A:3121–9.
doi: 10.1002/ajmg.a.37292
Stellacci E, Steindl K, Joset P, Mercurio L, Anselmi M, Cecchetti S, et al. Clinical and functional characterization of two novel ZBTB20 mutations causing Primrose syndrome. Hum Mutat. 2018;39:959–64.
doi: 10.1002/humu.23546
Grímsdóttir S, Hove HB, Kreiborg S, Ek J, Johansen A, Darvann TA, et al. Novel de novo mutation in ZBTB20 in Primrose syndrome in boy with short stature. Clin Dysmorphol. 2019;28:41–5.
doi: 10.1097/MCD.0000000000000244
Cleaver R, Berg J, Craft E, Foster A, Gibbons RJ, Hobson E, et al. Refining the Primrose syndrome phenotype: a study of five patients with ZBTB20 de novo variants and a review of the literature. Am J Med Genet A. 2019;179(3):344–9.
doi: 10.1002/ajmg.a.61024