Identification of oxidant susceptible proteins in Salmonella Typhimurium.


Journal

Molecular biology reports
ISSN: 1573-4978
Titre abrégé: Mol Biol Rep
Pays: Netherlands
ID NLM: 0403234

Informations de publication

Date de publication:
Mar 2020
Historique:
received: 29 10 2019
accepted: 13 02 2020
pubmed: 23 2 2020
medline: 21 10 2020
entrez: 21 2 2020
Statut: ppublish

Résumé

The human gut pathogen, Salmonella Typhimurium (S. Typhimurium) not only survives but also replicates inside the phagocytic cells. Bacterial proteins are the primary targets of phagocyte generated oxidants. Because of the different amino acid composition, some proteins are more prone to oxidation than others. Many oxidant induced modifications to amino acids have been described. Introduction of carbonyl group is one of such modifications, which takes place quite early following exposure of proteins to oxidants and is quite stable. Therefore, carbonyl groups can be exploited to identify oxidant susceptible proteins. Hypochlorous acid (HOCl) is one of the most potent oxidants produced by phagocytes. Incubation of S. Typhimurium with 3 mM HOCl resulted in more than 150 folds loss of bacterial viability. Proteins extracted from HOCl exposed S. Typhimurium cells showed about 60 folds (p < 0.001) more carbonyl levels as compared to unexposed cells. Similarly, 2, 4-Dinitrophenylhydrazine (2, 4-DNPH) derivatized proteins of HOCl treated S. Typhimurium cultures reacted strongly with anti-DNP antibodies as compared to buffer treated counterpart. Next, we have derivatized carbonyl groups on the proteins with biotin hydrazide. The derivatized proteins were then isolated by avidin affinity chromatography. Mass spectrometry based analysis revealed the presence of 204 proteins.

Identifiants

pubmed: 32076998
doi: 10.1007/s11033-020-05328-3
pii: 10.1007/s11033-020-05328-3
doi:

Substances chimiques

Bacterial Proteins 0
Oxidants 0
Hypochlorous Acid 712K4CDC10

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

2231-2242

Subventions

Organisme : Department of Biotechnology , Ministry of Science and Technology
ID : BT/PR13689/BRB/10/1399/2015

Références

Schlundt J, Toyofuku H, Jansen J, Herbst SA (2004) Emerging food-borne zoonoses. Rev Sci Tech 23:513–533
doi: 10.20506/rst.23.2.1506
Greig JD, Ravel A (2009) Analysis of foodborne outbreak data reported internationally for source attribution. Int J Food Microbiol 130:77–87. https://doi.org/10.1016/j.ijfoodmicro.2008.12.031
doi: 10.1016/j.ijfoodmicro.2008.12.031 pubmed: 19178974
Fang FC (2011) Antimicrobial actions of reactive oxygen species. MBio 2:1–6. https://doi.org/10.1128/mBio.00141-11
doi: 10.1128/mBio.00141-11
Slauch JM (2012) How does the oxidative burst of macrophages kill bacteria? Still an open question. Mol Microbiol 80:580–583. https://doi.org/10.1111/j.1365-2958.2011.07612.x.How
doi: 10.1111/j.1365-2958.2011.07612.x.How
Henard CA, Vázquez-torres A (2011) Nitric oxide and Salmonella pathogenesis. Front Microbiol 2:1–11. https://doi.org/10.3389/fmicb.2011.00084
doi: 10.3389/fmicb.2011.00084
Prütz WA (1996) Hypochlorous acid interactions with thiols, nucleotides, DNA, and other biological substrates. Arch Biochem Biophys 332:110–120. https://doi.org/10.1006/abbi.1996.0322
doi: 10.1006/abbi.1996.0322 pubmed: 8806715
Ford DA (2010) Lipid oxidation by hypochlorous acid: chlorinated lipids in atherosclerosis and myocardial ischemia. Clin Lipidol 5:835–852. https://doi.org/10.2217/clp.10.68
doi: 10.2217/clp.10.68 pubmed: 21339854 pmcid: 3041592
Albrich JM, Gilbaugh JH, Callahan KB, Hurst JK (1986) Effects of the putative neutrophil-generated toxin, hypochlorous acid, on membrane permeability and transport systems of Escherichia coli. J Clin Invest 78:177–184. https://doi.org/10.1172/JCI112548
doi: 10.1172/JCI112548 pubmed: 3013936 pmcid: 329547
Winterbourn CC (1985) Comparative reactivities of various biological compounds with myeloperoxidase-hydrogen peroxide-chloride, and similarity of the oxidant to hypochlorite. Biochim Biophys Acta 840:204–210
doi: 10.1016/0304-4165(85)90120-5
Hawkins CL, Pattison DI, Davies MJ (2003) Hypochlorite-induced oxidation of amino acids, peptides and proteins. Amino Acids 25:259–274. https://doi.org/10.1007/s00726-003-0016-x
doi: 10.1007/s00726-003-0016-x pubmed: 14661089
Rosen H, Klebanoff SJ, Wang Y, Brot N, Heinecke JW, Fu X (2009) Methionine oxidation contributes to bacterial killing by the myeloperoxidase system of neutrophils. Proc Natl Acad Sci USA 106:18686–18691. https://doi.org/10.1073/pnas.0909464106
doi: 10.1073/pnas.0909464106 pubmed: 19833874
Weiss SJ, Klein R, Slivka A, Wei M (1982) Chlorination of taurine by human neutrophils. Evidence for hypochlorous acid generation. J Clin Invest 70:598–607. https://doi.org/10.1172/JCI110652
doi: 10.1172/JCI110652 pubmed: 6286728 pmcid: 370261
Stanley NR, Pattison DI, Hawkins CL (2010) Ability of hypochlorous acid and N -chloramines to chlorinate DNA and its constituents. Chem Res Toxicol 23:1293–1302. https://doi.org/10.1021/tx100188b
doi: 10.1021/tx100188b pubmed: 20593802
Hawkins CL, Davies MJ (1999) Hypochlorite-induced oxidation of proteins in plasma: formation of chloramines and nitrogen-centred radicals and their role in protein fragmentation, Biochem J 340 (Pt 2): 539–548
doi: 10.1042/bj3400539
Levine RL (1983) Oxidative modification of glutamine synthetase. I. Inactivation is due to loss of one histidine residue. J Biol Chem 258:11823–11827
pubmed: 6137483
Mahawar M, Tran V, Sharp JS, Maier RJ (2011) Synergistic roles of helicobacter pylori methionine sulfoxide reductase and GroEL in repairing oxidant-damaged. J Biol Chem 286:19159–19169. https://doi.org/10.1074/jbc.M111.223677
doi: 10.1074/jbc.M111.223677 pubmed: 21460217 pmcid: 3099729
Curtis JM, Hahn WS, Long EK, Burrill JS, Arriaga EA, Bernlohr DA (2012) Protein carbonylation and metabolic control systems. Trends Endocrinol Metab 23:399–406. https://doi.org/10.1016/j.tem.2012.05.008
doi: 10.1016/j.tem.2012.05.008 pubmed: 22742812 pmcid: 3408802
Wang Y, Chen J, Ling M, Lopez JA, Chung DW, Fu X (2015) Hypochlorous acid generated by neutrophils inactivates ADAMTS13: an oxidative mechanism for regulating ADAMTS13 proteolytic activity during inflammation. J Biol Chem 290:1422–1431. https://doi.org/10.1074/jbc.M114.599084
doi: 10.1074/jbc.M114.599084 pubmed: 25422322
Khor HK, Fisher MT, Scho C (2004) Potential role of methionine sulfoxide in the inactivation of the chaperone GroEL by hypochlorous acid (HOCl) and peroxynitrite (ONOO؊). J Biol Chem 279:19486–19493. https://doi.org/10.1074/jbc.M310045200
doi: 10.1074/jbc.M310045200 pubmed: 14757771
Kuhns LG, Mahawar M, Sharp JS, Benoit S, Maier RJ (2013) Role of Helicobacter pylori methionine sulfoxide reductase in urease maturation. Biochem J 450:141–148. https://doi.org/10.1042/BJ20121434
doi: 10.1042/BJ20121434 pubmed: 23181726 pmcid: 3935233
Benoit SL, Bayyareddy K, Mahawar M, Sharp JS, Maier RJ (2013) Alkyl hydroperoxide reductase repair. J Bacteriol 195:5396–5401. https://doi.org/10.1128/JB.01001-13
doi: 10.1128/JB.01001-13 pubmed: 24097943 pmcid: 3837964
Harris AG, Wilson JE, Danon SJ, Dixon MF, Donegan K, Hazell SL (2003) Catalase (KatA) and KatA-associated protein (KapA) are essential to persistent colonization in the Helicobacter pylori SS1 mouse model. Microbiology 149:665–672. https://doi.org/10.1099/mic.0.26012-0
doi: 10.1099/mic.0.26012-0 pubmed: 12634335
Mehta N, Benoit S, Maier RJ (2003) Roles of conserved nucleotide-binding domains in accessory proteins, HypB and UreG, in the maturation of nickel-enzymes required for efficient Helicobacter pylori colonization. Microb Pathog 35:229–234
doi: 10.1016/S0882-4010(03)00151-7
Krisko A, Radman M (2013) Biology of extreme radiation resistance: the way of Deinococcus radiodurans, Cold Spring Harb Perspect Biol 5, 12765 (2013). https://doi.org/10.1101/cshperspect.a012765
doi: 10.1101/cshperspect.a012765 pubmed: 23818498 pmcid: 3685888
Denkel LA, Horst SA, Rouf SF, Kitowski V, Bohm OM, Rhen M, Jager T, Bange FC (2011) Methionine sulfoxide reductases are essential for virulence of Salmonella typhimurium, PLoS ONE. 6:26974. https://doi.org/10.1371/journal.pone.0026974 .
doi: 10.1371/journal.pone.0026974
Knudsen GM, Nielsen M, Thomsen LE, Aabo S, Rychlik I, Olsen JE (2014) The role of ClpP, RpoS and CsrA in growth and filament formation of Salmonella enterica serovar Typhimurium at low temperature. BMC Microbiol 14:1–9. https://doi.org/10.1186/s12866-014-0208-4
doi: 10.1186/s12866-014-0208-4
Levine RL, Oliver CN, Fulks RM, Stadtman ER (1981) Turnover’ of bacterial glutamine synthetase: oxidative inactivation precedes proteolysis. Proc Natl Acad Sci 78:2120–2124
doi: 10.1073/pnas.78.4.2120
Dalle-Donne I, Rossi R, Giustarini D, Milzani A, Colombo R (2003) Protein carbonyl groups as biomarkers of oxidative stress. Clin Chim Acta 329:23–38. https://doi.org/10.1016/S0009-8981(03)00003-2
doi: 10.1016/S0009-8981(03)00003-2 pubmed: 12589963
Pradeep DCD, Vegi K, Kutty AVM (2012) Protein carbonyl content as a stable oxidative stress marker in Type II Diabetes. Int J Biol Med Res 3:2362–2365
Dalle-Donne I, Giustarini D, Colombo R, Rossi R, Milzani A (2003) Protein carbonylation in human diseases. Trends Mol Med 9:169–176. https://doi.org/10.1016/S1471-4914(03)00031-5
doi: 10.1016/S1471-4914(03)00031-5 pubmed: 12727143
Petrov D, Zagrovic B (2011) Microscopic analysis of protein oxidative damage: effect of carbonylation on structure, dynamics, and aggregability of villin headpiece. J Am Chem Soc 133:7016–7024. https://doi.org/10.1021/ja110577e
doi: 10.1021/ja110577e pubmed: 21506564 pmcid: 3088313
Temple A, Yen TY, Gronert S (2006) Identification of specific protein carbonylation sites in model oxidations of human serum albumin. J Am Soc Mass Spectrom 17:1172–1180. https://doi.org/10.1016/j.jasms.2006.04.030
doi: 10.1016/j.jasms.2006.04.030 pubmed: 16750385
Bollineni RC, Fedorova M (2014) Carbonylated plasma proteins as potential biomarkers of obesity induced type 2 diabetes mellitus. J Proteom Res 13(11):5081–5093
doi: 10.1021/pr500324y
Stadtman ER (1992) Protein oxidation and aging. Science 257:1220–1224
doi: 10.1126/science.1355616
Berlett BS, Stadtman ER (1997) Protein oxidation in aging, disease, and oxidative stress. J Biol Chem 272:20313–20316
doi: 10.1074/jbc.272.33.20313
Suzuki YJ, Carini M, Butterfield DA (2010) Protein carbonylation. Antioxid Redox Signal 12:323–325. https://doi.org/10.1089/ars.2009.2887
doi: 10.1089/ars.2009.2887 pubmed: 19743917 pmcid: 2821144
Maisonneuve E, Ducret A, Khoueiry P, Lignon S, Longhi S, Talla E, Dukan S (2009) Rules governing selective protein carbonylation. PLoS ONE 4:e7269. https://doi.org/10.1371/journal.pone.0007269
doi: 10.1371/journal.pone.0007269 pubmed: 19802390 pmcid: 2751825
Grimsrud PA, Xie H, Griffin TJ, Bernlohr DA (2008) Oxidative stress and covalent modification of protein with bioactive aldehydes. J Biol Chem 283:21837–21841. https://doi.org/10.1074/jbc.R700019200
doi: 10.1074/jbc.R700019200 pubmed: 18445586 pmcid: 2494933
Yan LJ, Levine RL, Sohal RS (2000) Effects of aging and hyperoxia on oxidative damage to cytochrome C in the housefly. Musca domestica, Free Radic Biol Med 29:90–97. https://doi.org/10.1016/S0891-5849(00)00323-3
doi: 10.1016/S0891-5849(00)00323-3 pubmed: 10962209
England K, Cotter T (2004) Identification of carbonylated proteins by MALDI-TOF mass spectroscopy reveals susceptibility of ER. Biochem Biophys Res Commun 320:123–130. https://doi.org/10.1016/j.bbrc.2004.05.144
doi: 10.1016/j.bbrc.2004.05.144 pubmed: 15207711
Krisko A, Radman M (2010) Protein damage and death by radiation in Escherichia coli and Deinococcus radiodurans. Proc Natl Acad Sci 107:14373–14377. https://doi.org/10.1073/pnas.1009312107
doi: 10.1073/pnas.1009312107 pubmed: 20660760
Matallana-Surget S, Cavicchioli R, Fauconnier C, Wattiez R, Leroy B, Joux F, Raftery MJ, Lebaron P (2013) Shotgun redox proteomics: identification and quantitation of carbonylated proteins in the UVB-resistant marine bacterium, Photobacterium angustum S14. PLoS ONE 8:68112. https://doi.org/10.1371/journal.pone.0068112
doi: 10.1371/journal.pone.0068112
Madian AG, Regnier FE (2010) Profiling carbonylated proteins in human plasma. J Proteom Res 9:1330–1343
doi: 10.1021/pr900890k
Cabiscol E, Piulats E, Echave P, Herrero E, Ros J (2000) Oxidative stress promotes specific protein damage in Saccharomyces cerevisiae. Int Microbiol 275:27393–27398. https://doi.org/10.1074/jbc.M003140200
doi: 10.1074/jbc.M003140200
Tamarit J, Cabiscol E, Ros J (1998) Identification of the major oxidatively damaged proteins in Escherichia coli cells exposed to oxidative stress. J Biol Chem 273:3027–3032
doi: 10.1074/jbc.273.5.3027
Alamuri P, Maier RJ (2004) Methionine sulphoxide reductase is an important antioxidant enzyme in the gastric pathogen Helicobacter pylori. Mol Microbiol 53:1397–1406. https://doi.org/10.1111/j.1365-2958.2004.04190.x
doi: 10.1111/j.1365-2958.2004.04190.x pubmed: 15387818
Morris JC (1966) The acid ionization constant of HOCl from 5 to 35°. J Phys Chem 70:3798–3805. https://doi.org/10.1021/j100884a007
doi: 10.1021/j100884a007
Levine RL, Garland D, Oliver CN, Amici A, Climent I, Lenz AG, Ahn BW, Shaltiel S, Stadtman ER (1990) Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 186:464–478
doi: 10.1016/0076-6879(90)86141-H
Reznick AZ, Packer L (1994) Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Methods Enzymol 233:357–363
doi: 10.1016/S0076-6879(94)33041-7
Merril C, Goldman D, Sedman S, Ebert M (1981) Ultrasensitive stain for proteins in polyacrylamide gels shows regional variation in cerebrospinal fluid proteins. Science 211:1437–1438. https://doi.org/10.1126/science.6162199
doi: 10.1126/science.6162199 pubmed: 6162199
Harrison JE, Schultz J (1976) Studies on the chlorinating activity of myeloperoxidase. J Biol Chem 251:1371–1374
pubmed: 176150
Weng SL, Huang KY, Kaunang FJ, Huang CH, Kao HJ, Chang TH, Wang HY, Lu JJ, Lee TY (2017) Investigation and identification of protein carbonylation sites based on position-specific amino acid composition and physicochemical features. BMC Bioinform 18:66. https://doi.org/10.1186/s12859-017-1472-8
doi: 10.1186/s12859-017-1472-8
Mostertz J, Hecker M (2003) Patterns of protein carbonylation following oxidative stress in wild-type and sigB Bacillus subtilis cells. Mol Genet Genomics 269:640–648. https://doi.org/10.1007/s00438-003-0877-4
doi: 10.1007/s00438-003-0877-4 pubmed: 12845527
Dukan S, Nystro T (1999) Oxidative stress defense and deterioration of growth-arrested. Biochemistry 274:26027–26032. https://doi.org/10.1074/jbc.274.37.26027
doi: 10.1074/jbc.274.37.26027
Panmanee W, Gomez F, Witte D, Pancholi V, Britigan BE, Hassett DJ (2008) The peptidoglycan-associated lipoprotein OprL helps protect a Pseudomonas aeruginosa mutant devoid of the transactivator OxyR from hydrogen peroxide-mediated killing during planktonic and biofilm culture. J Bacteriol 190:3658–3669. https://doi.org/10.1128/JB.00022-08
doi: 10.1128/JB.00022-08 pubmed: 18310335 pmcid: 2395008
Iram SH, Cronan JE (2006) The oxidation systems of Escherichia coli and Salmonella enterica are not functionally equivalent. J Bacteriol 188:599–608. https://doi.org/10.1128/JB.188.2.599
doi: 10.1128/JB.188.2.599 pubmed: 16385050 pmcid: 1347308
Ostrovsky de Spicer P, O’Brien K, Maloy S (1991) Regulation of proline utilization in Salmonella typhimurium: a membrane-associated dehydrogenase binds DNA in vitro. J Bacteriol 173:211–219. https://doi.org/10.1128/jb.173.1.211-219.1991
doi: 10.1128/jb.173.1.211-219.1991 pubmed: 1987118 pmcid: 207177
Moreira CG, Weinshenker D, Sperandio V (2010) QseC mediates Salmonella enterica serovar typhimurium virulence in vitro and in vivo. Infect Immun 78:914–926. https://doi.org/10.1128/IAI.01038-09
doi: 10.1128/IAI.01038-09 pubmed: 20028809
Benítez-Páez A, Villarroya M, Armengod ME (2012) The Escherichia coli RlmN methyltransferase is a dual-specificity enzyme that modifies both rRNA and tRNA and controls translational accuracy. RNA 18:1783–1795. https://doi.org/10.1261/rna.033266.112
doi: 10.1261/rna.033266.112 pubmed: 22891362 pmcid: 3446703
Shippy DC, Eakley NM, Lauhon CT, Bochsler PN, Fadl AA (2013) Virulence characteristics of Salmonella following deletion of genes encoding the tRNA modification enzymes GidA and MnmE. Microb Pathog 57:1–9. https://doi.org/10.1016/j.micpath.2013.01.004
doi: 10.1016/j.micpath.2013.01.004 pubmed: 23375888
Richardson SMH, Higgins CF, Lilley DMJ (1984) The genetic control of DNA supercoiling in Salmonella typhimurium. EMBO J 3:1745–1752
doi: 10.1002/j.1460-2075.1984.tb02041.x
Rovinskiy N, Agbleke AA, Chesnokova O, Pang Z, Higgins P (2012) Rates of gyrase supercoiling and transcription elongation control supercoil density in a bacterial chromosome. PLoS Genet 8:1002845. https://doi.org/10.1371/journal.pgen.1002845
doi: 10.1371/journal.pgen.1002845
Mankovich JA, Mcintyre CA, Walker GC (1989) Nucleotide sequence of the Salmonella typhimurium mutL gene required for mismatch repair : homology of MutL to HexB of Streptococcus pneumoniae and to PMS1 of the yeast Saccharomyces cerevisiae. J Bacteriol 171:5325–5331
doi: 10.1128/JB.171.10.5325-5331.1989
Mayola A, Irazoki O, Martínez IA, Petrov D, Menolascina F, Stocker R, Reyes-Darias JA, Krell T, Barbé J, Campoy S (2014) RecA protein plays a role in the chemotactic response and chemoreceptor clustering of Salmonella enterica. PLoS ONE 9:e105578. https://doi.org/10.1371/journal.pone.0105578
doi: 10.1371/journal.pone.0105578 pubmed: 25147953 pmcid: 4141790
Schechter LM, Damrauer SM, Lee CA (1999) Two AraC/XylS family members can independently counteract the effect of repressing sequences upstream of the hilA promoter. Mol Microbiol 32:629–642. https://doi.org/10.1046/j.1365-2958.1999.01381.x
doi: 10.1046/j.1365-2958.1999.01381.x pubmed: 10320584
Bernal-Bayard J, Ramos-Morales F (2009) Salmonella type III secretion effector SlrP is an E3 ubiquitin ligase for mammalian thioredoxin. J Biol Chem 284:27587–27595. https://doi.org/10.1074/jbc.M109.010363
doi: 10.1074/jbc.M109.010363 pubmed: 19690162 pmcid: 2785687
Tucker SC, Galán JE (2000) Complex function for SicA, a Salmonella enterica serovar typhimurium type III secretion-associated chaperone. J Bacteriol 182:2262–2268. https://doi.org/10.1128/JB.182.8.2262-2268.2000
doi: 10.1128/JB.182.8.2262-2268.2000 pubmed: 10735870 pmcid: 111276
Guo L, Lim KB, Poduje CM, Daniel M, Gunn JS, Hackett M, Miller SI (1998) Lipid A acylation and bacterial resistance against vertebrate antimicrobial peptides. Cell 95:189–198. https://doi.org/10.1016/S0092-8674(00)81750-X
doi: 10.1016/S0092-8674(00)81750-X pubmed: 9790526
Acuña LG, Barros MJ, Peñaloza D, Rodas PI, Paredes-Sabja D, Fuentes JA, Gil F, Calderón IL (2016) A feed-forward loop between SroC and MgrR small RNAs modulates the expression of eptB and the susceptibility to polymyxin B in Salmonella Typhimurium. Microbiology 162:1996–2004. https://doi.org/10.1099/mic.0.000365
doi: 10.1099/mic.0.000365 pubmed: 27571709
Westermann AJ, Venturini E, Sellin ME, Förstner KU, Hardt W-D, Vogel J (2019) The major RNA-binding protein ProQ impacts virulence gene expression in Salmonella enterica Serovar Typhimurium. MBio 10:1–21. https://doi.org/10.1128/mBio.02504-18
doi: 10.1128/mBio.02504-18
Taga ME, Miller ST, Bassler BL (2003) Lsr-mediated transport and processing of Al-2 in Salmonella typhimurium. Mol Microbiol 50:1411–1427. https://doi.org/10.1046/j.1365-2958.2003.03781.x
doi: 10.1046/j.1365-2958.2003.03781.x pubmed: 14622426

Auteurs

Shekhar Apoorva (S)

Division of Biochemistry, Indian Veterinary Research Institute, Izatnagar, Bareilly, U.P., 243122, India.

Pranatee Behera (P)

Division of Biochemistry, Indian Veterinary Research Institute, Izatnagar, Bareilly, U.P., 243122, India.

Basavaraj Sajjanar (B)

Division of Biotechnology, Indian Veterinary Research Institute, Izatnagar, Bareilly, U.P., 243122, India.

Manish Mahawar (M)

Division of Biochemistry, Indian Veterinary Research Institute, Izatnagar, Bareilly, U.P., 243122, India. manishbiochemistry@gmail.com.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH