Intestinal intermediate filament polypeptides in C. elegans: Common and isotype-specific contributions to intestinal ultrastructure and function.
Actin Cytoskeleton
/ metabolism
Actins
/ chemistry
Animals
Bacterial Proteins
/ metabolism
Caenorhabditis elegans
Caenorhabditis elegans Proteins
/ metabolism
Cytoskeleton
/ metabolism
Elasticity
Green Fluorescent Proteins
/ metabolism
Intermediate Filament Proteins
/ metabolism
Intermediate Filaments
/ metabolism
Intestinal Mucosa
/ metabolism
Intestines
/ ultrastructure
Luminescent Proteins
/ metabolism
Microvilli
/ metabolism
Mutation
Oxidative Stress
Viscosity
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
21 02 2020
21 02 2020
Historique:
received:
28
08
2019
accepted:
17
01
2020
entrez:
22
2
2020
pubmed:
23
2
2020
medline:
31
12
2020
Statut:
epublish
Résumé
The abundance and diversity of intermediate filaments (IFs) in the C. elegans intestine indicate important contributions to intestinal function and organismal wellbeing. Fluorescent IF reporters localize below the actin-rich brush border and are highly enriched in the lumen-enveloping endotube, which is attached to the C. elegans apical junction. Mapping intestinal viscoelasticity by contact-free Brillouin microscopy reveals that the IF-rich endotube is positioned at the interface between the stiff brush border and soft cytoplasm suggesting a mechanical buffering function to deal with the frequent luminal distortions occurring during food intake and movement. In accordance, depletion of IFB-2, IFC-2 and IFD-2 leads to intestinal lumen dilation although depletion of IFC-1, IFD-1 and IFP-1 do not. Ultrastructural analyses of loss of function mutants further show that IFC-2 mutants have a rarefied endotube and IFB-2 mutants lack an endotube altogether. Remarkably, almost all IFB-2- and IFC-2-deficient animals develop to fertile adults. But developmental retardation, reduced brood size, altered survival and increased sensitivity to microbial toxin, osmotic and oxidative stress are seen in both mutants albeit to different degrees. Taken together, we propose that individual intestinal IF polypeptides contribute in different ways to endotube morphogenesis and cooperate to cope with changing environments.
Identifiants
pubmed: 32081918
doi: 10.1038/s41598-020-59791-w
pii: 10.1038/s41598-020-59791-w
pmc: PMC7035338
doi:
Substances chimiques
Actins
0
Bacterial Proteins
0
Caenorhabditis elegans Proteins
0
Cyan Fluorescent Protein
0
Intermediate Filament Proteins
0
Luminescent Proteins
0
yellow fluorescent protein, Bacteria
0
Green Fluorescent Proteins
147336-22-9
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
3142Références
Baumgart, D. C. & Dignass, A. U. Intestinal barrier function. Curr. Opin. Clin. Nutr. Metab. Care 5, 685–694, https://doi.org/10.1097/01.mco.0000038813.16540.3b (2002).
doi: 10.1097/01.mco.0000038813.16540.3b
pubmed: 12394645
Chelakkot, C., Ghim, J. & Ryu, S. H. Mechanisms regulating intestinal barrier integrity and its pathological implications. Exp. Mol. Med. 50, 103, https://doi.org/10.1038/s12276-018-0126-x (2018).
doi: 10.1038/s12276-018-0126-x
pubmed: 30115904
pmcid: 6095905
Crawley, S. W., Mooseker, M. S. & Tyska, M. J. Shaping the intestinal brush border. J. Cell Biol. 207, 441–451, https://doi.org/10.1083/jcb.201407015 (2014).
doi: 10.1083/jcb.201407015
pubmed: 25422372
pmcid: 4242837
Turner, J. R. Intestinal mucosal barrier function in health and disease. Nat. Rev. Immunol. 9, 799–809, https://doi.org/10.1038/nri2653 (2009).
doi: 10.1038/nri2653
pubmed: 19855405
Bement, W. M. & Mooseker, M. S. The cytoskeleton of the intestinal epithelium: Components, assembly, and dynamic rearrangements. In The Cytoskeleton: A Multi-Volume Treatise, Vol. 3 (ed. John, E. H. and Ian, F. P.). JAI Press, Greenwich, 359–404 (1996).
Hirokawa, N., Tilney, L. G., Fujiwara, K. & Heuser, J. E. Organization of actin, myosin, and intermediate filaments in the brush border of intestinal epithelial cells. J. Cell Biol. 94, 425–443, https://doi.org/10.1083/jcb.94.2.425 (1982).
doi: 10.1083/jcb.94.2.425
pubmed: 7202010
Brunser, O. & Luft, H. J. Fine structure of the apex of absorptive cell from rat small intestine. J. ultrastructure Res. 31, 291–311 (1970).
doi: 10.1016/S0022-5320(70)90133-4
Coch, R. A. & Leube, R. E. Intermediate Filaments and Polarization in the Intestinal Epithelium. Cells 5, https://doi.org/10.3390/cells5030032 (2016).
doi: 10.3390/cells5030032
Bossinger, O., Fukushige, T., Claeys, M., Borgonie, G. & McGhee, J. D. The apical disposition of the Caenorhabditis elegans intestinal terminal web is maintained by LET-413. Dev. Biol. 268, 448–456, https://doi.org/10.1016/j.ydbio.2004.01.003 (2004).
doi: 10.1016/j.ydbio.2004.01.003
pubmed: 15063180
Carberry, K., Wiesenfahrt, T., Windoffer, R., Bossinger, O. & Leube, R. E. Intermediate filaments in Caenorhabditis elegans. Cell Motil. Cytoskeleton 66, 852–864, https://doi.org/10.1002/cm.20372 (2009).
doi: 10.1002/cm.20372
pubmed: 19437512
Husken, K. et al. Maintenance of the intestinal tube in Caenorhabditis elegans: the role of the intermediate filament protein IFC-2. Differ. 76, 881–896, https://doi.org/10.1111/j.1432-0436.2008.00264.x (2008).
doi: 10.1111/j.1432-0436.2008.00264.x
Geisler, F. et al. A novel function for the MAP kinase SMA-5 in intestinal tube stability. Mol. Biol. Cell 27, 3855–3868, https://doi.org/10.1091/mbc.E16-02-0099 (2016).
doi: 10.1091/mbc.E16-02-0099
pubmed: 27733627
pmcid: 5170608
Jahnel, O., Hoffmann, B., Merkel, R., Bossinger, O. & Leube, R. E. Mechanical Probing of the Intermediate Filament-Rich Caenorhabditis Elegans Intestine. Methods Enzymol. 568, 681–706, https://doi.org/10.1016/bs.mie.2015.08.030 (2016).
doi: 10.1016/bs.mie.2015.08.030
pubmed: 26795489
Block, J., Schroeder, V., Pawelzyk, P., Willenbacher, N. & Koster, S. Physical properties of cytoplasmic intermediate filaments. Biochim. Biophys. Acta 1853, 3053–3064, https://doi.org/10.1016/j.bbamcr.2015.05.009 (2015).
doi: 10.1016/j.bbamcr.2015.05.009
pubmed: 25975455
Carberry, K. et al. The novel intestinal filament organizer IFO-1 contributes to epithelial integrity in concert with ERM-1 and DLG-1. Dev. 139, 1851–1862, https://doi.org/10.1242/dev.075788 (2012).
doi: 10.1242/dev.075788
Geisler, F. et al. The intestinal intermediate filament network responds to and protects against microbial insults and toxins. Development 146, https://doi.org/10.1242/dev.169482 (2019).
doi: 10.1242/dev.169482
Karabinos, A., Schulze, E., Klisch, T., Wang, J. & Weber, K. Expression profiles of the essential intermediate filament (IF) protein A2 and the IF protein C2 in the nematode Caenorhabditis elegans. Mech. Dev. 117, 311–314, https://doi.org/10.1016/s0925-4773(02)00192-2 (2002).
doi: 10.1016/s0925-4773(02)00192-2
pubmed: 12204276
Karabinos, A., Schunemann, J. & Weber, K. Most genes encoding cytoplasmic intermediate filament (IF) proteins of the nematode Caenorhabditis elegans are required in late embryogenesis. Eur. J. Cell Biol. 83, 457–468, https://doi.org/10.1078/0171-9335-00407 (2004).
doi: 10.1078/0171-9335-00407
pubmed: 15540462
Karabinos, A., Schulze, E., Schunemann, J., Parry, D. A. & Weber, K. In vivo and in vitro evidence that the four essential intermediate filament (IF) proteins A1, A2, A3 and B1 of the nematode Caenorhabditis elegans form an obligate heteropolymeric IF system. J. Mol. Biol. 333, 307–319, https://doi.org/10.1016/j.jmb.2003.08.041 (2003).
doi: 10.1016/j.jmb.2003.08.041
pubmed: 14529618
Karabinos, A., Schulze, E. & Baumeister, R. Analysis of the novel excretory cell expressed ECP-1 protein and its proposed ECP-1/IFC-2 fusion protein EXC-2 in the nematode Caenorhabditis elegans. Gene Expr. Patterns 34, 119061, https://doi.org/10.1016/j.gep.2019.119061 (2019).
doi: 10.1016/j.gep.2019.119061
pubmed: 31207388
Al-Hashimi, H., Hall, D. H., Ackley, B. D., Lundquist, E. A. & Buechner, M. Tubular Excretory Canal Structure Depends on Intermediate Filaments EXC-2 and IFA-4 in Caenorhabditis elegans. Genet. 210, 637–652, https://doi.org/10.1534/genetics.118.301078 (2018).
doi: 10.1534/genetics.118.301078
Khan, L. A. et al. A tensile trilayered cytoskeletal endotube drives capillary-like lumenogenesis. J. Cell Biol. 218, 2403–2424, https://doi.org/10.1083/jcb.201811175 (2019).
doi: 10.1083/jcb.201811175
pubmed: 31239283
pmcid: 6605810
Dodemont, H., Riemer, D., Ledger, N. & Weber, K. Eight genes and alternative RNA processing pathways generate an unexpectedly large diversity of cytoplasmic intermediate filament proteins in the nematode Caenorhabditis elegans. EMBO J. 13, 2625–2638 (1994).
doi: 10.1002/j.1460-2075.1994.tb06553.x
Bevilacqua, C., Sanchez-Iranzo, H., Richter, D., Diz-Munoz, A. & Prevedel, R. Imaging mechanical properties of sub-micron ECM in live zebrafish using Brillouin microscopy. Biomed. Opt. Express 10, 1420–1431, https://doi.org/10.1364/BOE.10.001420 (2019).
doi: 10.1364/BOE.10.001420
pubmed: 30891356
pmcid: 6420298
Prevedel, R., Diz-Muñoz, A., Ruocco, G. & Antonacci, G. Brillouin microscopy: an emerging tool for mechanobiology. Nat. Methods. 16, 969-977, https://doi.org/10.1038/s41592-019-0543-3 (2019).
doi: 10.1038/s41592-019-0543-3
Scarcelli, G. et al. Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy. Nat. Methods 12, 1132–1134, https://doi.org/10.1038/nmeth.3616 (2015).
doi: 10.1038/nmeth.3616
pubmed: 26436482
pmcid: 4666809
Claessens, M. M. A. E., Bathe, M., Frey, E. & Bausch, A. R. Actin-binding proteins sensitively mediate F-actin bundle stiffness. Nat. Mater. 5, 748–753, https://doi.org/10.1038/nmat1718 (2006).
doi: 10.1038/nmat1718
pubmed: 16921360
Grimm-Gunter, E. M. et al. Plastin 1 binds to keratin and is required for terminal web assembly in the intestinal epithelium. Mol. Biol. Cell 20, 2549–2562, https://doi.org/10.1091/mbc.E08-10-1030 (2009).
doi: 10.1091/mbc.E08-10-1030
pubmed: 19321664
pmcid: 2682596
Ding, W. Y. et al. Plastin increases cortical connectivity to facilitate robust polarization and timely cytokinesis. J. Cell Biol. 216, 1371–1386, https://doi.org/10.1083/jcb.201603070 (2017).
doi: 10.1083/jcb.201603070
pubmed: 28400443
pmcid: 5412556
Piper, M. D. & Bartke, A. Diet and aging. Cell Metab. 8, 99–104, https://doi.org/10.1016/j.cmet.2008.06.012 (2008).
doi: 10.1016/j.cmet.2008.06.012
pubmed: 18680711
Toivola, D. M., Strnad, P., Habtezion, A. & Omary, M. B. Intermediate filaments take the heat as stress proteins. Trends Cell Biol. 20, 79–91, https://doi.org/10.1016/j.tcb.2009.11.004 (2010).
doi: 10.1016/j.tcb.2009.11.004
pubmed: 20045331
pmcid: 2843093
D’Alessandro, M., Russell, D., Morley, S. M., Davies, A. M. & Lane, E. B. Keratin mutations of epidermolysis bullosa simplex alter the kinetics of stress response to osmotic shock. J. Cell Sci. 115, 4341–4351, https://doi.org/10.1242/jcs.00120 (2002).
doi: 10.1242/jcs.00120
pubmed: 12376565
Pekny, M. & Lane, E. B. Intermediate filaments and stress. Exp. Cell Res. 313, 2244–2254, https://doi.org/10.1016/j.yexcr.2007.04.023 (2007).
doi: 10.1016/j.yexcr.2007.04.023
pubmed: 17524394
Williams, K., Williams, K., Baucher, H. M. & Plenefisch, J. The tail domain is essential but the head domain dispensable for C. elegans intermediate filament IFA-2 function. PLoS One 10, e0119282, https://doi.org/10.1371/journal.pone.0119282 (2015).
doi: 10.1371/journal.pone.0119282
pubmed: 25742641
pmcid: 4351089
Moll, R., Divo, M. & Langbein, L. The human keratins: biology and pathology. Histochem. Cell Biol. 129, 705–733, https://doi.org/10.1007/s00418-008-0435-6 (2008).
doi: 10.1007/s00418-008-0435-6
pubmed: 18461349
pmcid: 2386534
Bouameur, J. E. & Magin, T. M. Lessons from Animal Models of Cytoplasmic Intermediate Filament Proteins. Subcell. Biochem. 82, 171–230, https://doi.org/10.1007/978-3-319-49674-0_7 (2017).
doi: 10.1007/978-3-319-49674-0_7
pubmed: 28101863
Vijayaraj, P. et al. Keratins regulate protein biosynthesis through localization of GLUT1 and -3 upstream of AMP kinase and Raptor. J. Cell Biol. 187, 175–184, https://doi.org/10.1083/jcb.200906094 (2009).
doi: 10.1083/jcb.200906094
pubmed: 19841136
pmcid: 2768834
Kumar, V. et al. A keratin scaffold regulates epidermal barrier formation, mitochondrial lipid composition, and activity. J. Cell Biol. 211, 1057–1075, https://doi.org/10.1083/jcb.201404147 (2015).
doi: 10.1083/jcb.201404147
pubmed: 26644517
pmcid: 4674273
Sandilands, A. et al. Generation and characterisation of keratin 7 (K7) knockout mice. PLoS One 8, e64404, https://doi.org/10.1371/journal.pone.0064404 (2013).
doi: 10.1371/journal.pone.0064404
pubmed: 23741325
pmcid: 3669307
Tamai, Y. et al. Cytokeratins 8 and 19 in the mouse placental development. J. Cell Biol. 151, 563–572, https://doi.org/10.1083/jcb.151.3.563 (2000).
doi: 10.1083/jcb.151.3.563
pubmed: 11062258
pmcid: 2185583
Magin, T. M. et al. Lessons from keratin 18 knockout mice: formation of novel keratin filaments, secondary loss of keratin 7 and accumulation of liver-specific keratin 8-positive aggregates. J. Cell Biol. 140, 1441–1451, https://doi.org/10.1083/jcb.140.6.1441 (1998).
doi: 10.1083/jcb.140.6.1441
pubmed: 9508776
pmcid: 2132680
Baribault, H., Penner, J., Iozzo, R. V. & Wilson-Heiner, M. Colorectal hyperplasia and inflammation in keratin 8-deficient FVB/N mice. Genes. Dev. 8, 2964–2973, https://doi.org/10.1101/gad.8.24.2964 (1994).
doi: 10.1101/gad.8.24.2964
pubmed: 7528156
Ameen, N. A., Figueroa, Y. & Salas, P. J. Anomalous apical plasma membrane phenotype in CK8-deficient mice indicates a novel role for intermediate filaments in the polarization of simple epithelia. J. Cell Sci. 114, 563–575 (2001).
pubmed: 11171325
Toivola, D. M., Krishnan, S., Binder, H. J., Singh, S. K. & Omary, M. B. Keratins modulate colonocyte electrolyte transport via protein mistargeting. J. Cell Biol. 164, 911–921, https://doi.org/10.1083/jcb.200308103 (2004).
doi: 10.1083/jcb.200308103
pubmed: 15007064
pmcid: 2172274
Asghar, M. N. et al. The amount of keratins matters for stress protection of the colonic epithelium. PLoS One 10, e0127436, https://doi.org/10.1371/journal.pone.0127436 (2015).
doi: 10.1371/journal.pone.0127436
pubmed: 26000979
pmcid: 4441500
Treitz, C., Cassidy, L., Hockendorf, A., Leippe, M. & Tholey, A. Quantitative proteome analysis of Caenorhabditis elegans upon exposure to nematicidal Bacillus thuringiensis. J. Proteom. 113, 337–350, https://doi.org/10.1016/j.jprot.2014.09.027 (2015).
doi: 10.1016/j.jprot.2014.09.027
Hu, J. et al. High stretchability, strength, and toughness of living cells enabled by hyperelastic vimentin intermediate filaments. Proc. Natl Acad. Sci. USA. https://doi.org/10.1073/pnas.1903890116 (2019).
doi: 10.1073/pnas.1903890116
pubmed: 31852827
Karabinos, A., Schunemann, J. & Parry, D. A. Assembly studies of six intestinal intermediate filament (IF) proteins B2, C1, C2, D1, D2, and E1 in the nematode C. elegans. Cytoskeleton 74, 107–113, https://doi.org/10.1002/cm.21354 (2017).
doi: 10.1002/cm.21354
pubmed: 28063204
Karabinos, A., Schmidt, H., Harborth, J., Schnabel, R. & Weber, K. Essential roles for four cytoplasmic intermediate filament proteins in Caenorhabditis elegans development. Proc. Natl Acad. Sci. USA 98, 7863–7868, https://doi.org/10.1073/pnas.121169998 (2001).
doi: 10.1073/pnas.121169998
pubmed: 11427699
Sarov, M. et al. A genome-scale resource for in vivo tag-based protein function exploration in C. elegans. Cell 150, 855–866, https://doi.org/10.1016/j.cell.2012.08.001 (2012).
doi: 10.1016/j.cell.2012.08.001
pubmed: 22901814
pmcid: 3979301
Bischof, L. J., Huffman, D. L. & Aroian, R. V. Assays for toxicity studies in C. elegans with Bt crystal proteins. Methods Mol. Biol. 351, 139–154, https://doi.org/10.1385/1-59745-151-7:139 (2006).
doi: 10.1385/1-59745-151-7:139
pubmed: 16988432
Scarcelli, G. & Yun, S. H. Confocal Brillouin microscopy for three-dimensional mechanical imaging. Nat. Photonics 2, 39–43, https://doi.org/10.1038/nphoton.2007.250 (2007).
doi: 10.1038/nphoton.2007.250
pubmed: 19812712
pmcid: 2757783
Schlussler, R. et al. Mechanical Mapping of Spinal Cord Growth and Repair in Living Zebrafish Larvae by Brillouin Imaging. Biophys. J. 115, 911–923, https://doi.org/10.1016/j.bpj.2018.07.027 (2018).
doi: 10.1016/j.bpj.2018.07.027
pubmed: 30122291
pmcid: 6127462
Francis, R. & Waterston, R. H. Muscle cell attachment in Caenorhabditis elegans. J. Cell Biol. 114, 465–479, https://doi.org/10.1083/jcb.114.3.465 (1991).
doi: 10.1083/jcb.114.3.465
pubmed: 1860880
Herrmann, H., Kreplak, L. & Aebi, U. Isolation, characterization, and in vitro assembly of intermediate filaments. Methods Cell Biol. 78, 3–24 (2004).
doi: 10.1016/S0091-679X(04)78001-2
McDonald, K. L. & Webb, R. I. Freeze substitution in 3 hours or less. J. Microsc. 243, 227–233, https://doi.org/10.1111/j.1365-2818.2011.03526.x (2011).
doi: 10.1111/j.1365-2818.2011.03526.x
pubmed: 21827481
Reipert, S. et al. Agitation Modules: Flexible Means to Accelerate Automated Freeze Substitution. J. Histochem. Cytochem. 66, 903–921, https://doi.org/10.1369/0022155418786698 (2018).
doi: 10.1369/0022155418786698
pubmed: 29969056
pmcid: 6262506