Exploring the advantages of intensity-modulated proton therapy: experimental validation of biological effects using two different beam intensity-modulation patterns.
Algorithms
Cell Line, Tumor
Humans
Linear Energy Transfer
Male
Monte Carlo Method
Photons
Prostatic Neoplasms
/ radiotherapy
Proton Therapy
/ methods
Radiotherapy Dosage
Radiotherapy Planning, Computer-Assisted
/ methods
Radiotherapy, Intensity-Modulated
/ methods
Translational Research, Biomedical
/ methods
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
21 02 2020
21 02 2020
Historique:
received:
27
11
2019
accepted:
30
01
2020
entrez:
22
2
2020
pubmed:
23
2
2020
medline:
31
12
2020
Statut:
epublish
Résumé
In current treatment plans of intensity-modulated proton therapy, high-energy beams are usually assigned larger weights than low-energy beams. Using this form of beam delivery strategy cannot effectively use the biological advantages of low-energy and high-linear energy transfer (LET) protons present within the Bragg peak. However, the planning optimizer can be adjusted to alter the intensity of each beamlet, thus maintaining an identical target dose while increasing the weights of low-energy beams to elevate the LET therein. The objective of this study was to experimentally validate the enhanced biological effects using a novel beam delivery strategy with elevated LET. We used Monte Carlo and optimization algorithms to generate two different intensity-modulation patterns, namely to form a downslope and a flat dose field in the target. We spatially mapped the biological effects using high-content automated assays by employing an upgraded biophysical system with improved accuracy and precision of collected data. In vitro results in cancer cells show that using two opposed downslope fields results in a more biologically effective dose, which may have the clinical potential to increase the therapeutic index of proton therapy.
Identifiants
pubmed: 32081928
doi: 10.1038/s41598-020-60246-5
pii: 10.1038/s41598-020-60246-5
pmc: PMC7035246
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
3199Subventions
Organisme : NCI NIH HHS
ID : U19 CA021239
Pays : United States
Commentaires et corrections
Type : ErratumIn
Références
Particle Therapy Co-Operative Group, https://www.ptcog.ch/index.php (2017).
ICRU. Prescrbing, recording, and reporting proton-beam therapy (ICRU Report 78). J ICRU 7, NP, https://doi.org/10.1093/jicru/ndm021 (2007).
Yock, T. I. et al. Long-term toxic effects of proton radiotherapy for paediatric medulloblastoma: a phase 2 single-arm study. The lancet oncology 17, 287–298, https://doi.org/10.1016/S1470-2045(15)00167-9 (2016).
doi: 10.1016/S1470-2045(15)00167-9
pubmed: 26830377
pmcid: 26830377
Eaton, B. R. et al. Clinical outcomes among children with standard-risk medulloblastoma treated with proton and photon radiation therapy: A comparison of disease control and overall survival. International Journal of Radiation Oncology* Biology* Physics 94, 133–138 (2016).
doi: 10.1016/j.ijrobp.2015.09.014
Kahalley, L. S. et al. Superior Intellectual Outcomes After Proton Radiotherapy Compared With Photon Radiotherapy for Pediatric Medulloblastoma. Journal of Clinical Oncology, JCO. 19, 01706 (2019).
Baumann, B. C. et al. Comparative Effectiveness of Proton vs Photon Therapy as Part of Concurrent Chemoradiotherapy for Locally Advanced Cancer. JAMA oncology (2019).
Paganetti, H. et al. Report of the AAPM TG-256 on the relative biological effectiveness of proton beams in radiation therapy. Medical Physics (2019).
Paganetti, H. et al. Relative biological effectiveness (RBE) values for proton beam therapy. International Journal of Radiation Oncology*Biology*Physics 53, 407–421, https://doi.org/10.1016/S0360-3016(02)02754-2 (2002).
doi: 10.1016/S0360-3016(02)02754-2
Paganetti, H. Relative biological effectiveness (RBE) values for proton beam therapy. Variations as a function of biological endpoint, dose, and linear energy transfer. Phys Med Biol 59, R419–472, https://doi.org/10.1088/0031-9155/59/22/R419 (2014).
doi: 10.1088/0031-9155/59/22/R419
pubmed: 25361443
pmcid: 25361443
Mohan, R. et al. Radiobiological issues in proton therapy. Acta Oncol 56, 1367–1373, https://doi.org/10.1080/0284186X.2017.1348621 (2017).
doi: 10.1080/0284186X.2017.1348621
pubmed: 28826292
pmcid: 28826292
Jones, B., McMahon, S. & Prise, K. The radiobiology of proton therapy: challenges and opportunities around relative biological effectiveness. Clinical Oncology 30, 285–292 (2018).
doi: 10.1016/j.clon.2018.01.010
pubmed: 29454504
pmcid: 29454504
Guan, F. et al. Analysis of the track- and dose-averaged LET and LET spectra in proton therapy using the geant4 Monte Carlo code. Medical Physics 42, 6234–6247, https://doi.org/10.1118/1.4932217 (2015).
doi: 10.1118/1.4932217
pubmed: 26520716
pmcid: 26520716
Chu, W. T. Overview of light-ion beam therapy (2006).
Wilkens, J. J. & Oelfke, U. Three-dimensional LET calculations for treatment planning of proton therapy. Zeitschrift für Medizinische Physik 14, 41–46 (2004).
doi: 10.1078/0939-3889-00191
pubmed: 15104009
pmcid: 15104009
Bortfeld, T. An analytical approximation of the Bragg curve for therapeutic proton beams. Medical Physics 24, 2024–2033 (1997).
doi: 10.1118/1.598116
pubmed: 9434986
pmcid: 9434986
Cortés-Giraldo, M. & Carabe, A. A critical study of different Monte Carlo scoring methods of dose average linear-energy-transfer maps calculated in voxelized geometries irradiated with clinical proton beams. Physics in Medicine & Biology 60, 2645 (2015).
doi: 10.1088/0031-9155/60/7/2645
Marsolat, F., De Marzi, L., Pouzoulet, F. & Mazal, A. Analytical linear energy transfer model including secondary particles: calculations along the central axis of the proton pencil beam. Physics in Medicine & Biology 61, 740 (2016).
doi: 10.1088/0031-9155/61/2/740
Guan, F. et al. Spatial mapping of the biologic effectiveness of scanned particle beams: towards biologically optimized particle therapy. Scientific reports 5, 9850, https://doi.org/10.1038/srep09850 (2015).
doi: 10.1038/srep09850
pubmed: 25984967
pmcid: 25984967
Chaudhary, P. et al. Relative Biological Effectiveness Variation Along Monoenergetic and Modulated Bragg Peaks of a 62-MeV Therapeutic Proton Beam: A Preclinical Assessment. International Journal of Radiation Oncology*Biology*Physics 90, 27–35, https://doi.org/10.1016/j.ijrobp.2014.05.010 (2014).
doi: 10.1016/j.ijrobp.2014.05.010
Howard, M. E. et al. Investigating Dependencies of Relative Biological Effectiveness for Proton Therapy in Cancer Cells. International Journal of Particle Therapy 4, 12–22 (2017).
Britten, R. A. et al. Variations in the RBE for cell killing along the depth-dose profile of a modulated proton therapy beam. Radiation research 179, 21–28, https://doi.org/10.1667/RR2737.1 (2013).
doi: 10.1667/RR2737.1
pubmed: 23148508
pmcid: 23148508
Wilkens, J. J. & Oelfke, U. A phenomenological model for the relative biological effectiveness in therapeutic proton beams. Physics in Medicine and Biology 49, 2811–2825 (2004).
doi: 10.1088/0031-9155/49/13/004
pubmed: 15285249
pmcid: 15285249
Carabe-Fernandez, A., Dale, R. G. & Jones, B. The incorporation of the concept of minimum RBE (RBE min) into the linear-quadratic model and the potential for improved radiobiological analysis of high-LET treatments. International journal of radiation biology 83, 27–39 (2007).
doi: 10.1080/09553000601087176
pubmed: 17357437
pmcid: 17357437
Wedenberg, M., Lind, B. K. & Hårdemark, B. A model for the relative biological effectiveness of protons: the tissue specific parameter α/β of photons is a predictor for the sensitivity to LET changes. Acta oncologica 52, 580–588 (2013).
doi: 10.3109/0284186X.2012.705892
pubmed: 22909391
pmcid: 22909391
McNamara, A. L., Schuemann, J. & Paganetti, H. A phenomenological relative biological effectiveness (RBE) model for proton therapy based on all published in vitro cell survival data. Physics in Medicine and Biology 60, 8399–8416, https://doi.org/10.1088/0031-9155/60/21/8399 (2015).
doi: 10.1088/0031-9155/60/21/8399
pubmed: 26459756
pmcid: 26459756
Grün, R., Friedrich, T., Krämer, M. & Scholz, M. Systematics of relative biological effectiveness measurements for proton radiation along the spread out Bragg peak: experimental validation of the local effect model. Physics in Medicine and Biology 62, 890 (2017).
doi: 10.1088/1361-6560/62/3/890
pubmed: 28072575
pmcid: 28072575
Grün, R., Friedrich, T., Traneus, E. & Scholz, M. Is the dose‐averaged LET a reliable predictor for the relative biological effectiveness? Medical Physics 46, 1064–1074 (2019).
doi: 10.1002/mp.13347
pubmed: 30565705
pmcid: 30565705
ICRU. Report 86. Quantification and reporting of low-dose and other heterogeneous exposures. J ICRU 11, 1–77, https://doi.org/10.1093/jicru/ndr028 (2011).
doi: 10.1093/jicru/ndr028
Polster, L. et al. Extension of TOPAS for the simulation of proton radiation effects considering molecular and cellular endpoints. Physics in medicine and biology 60, 5053 (2015).
doi: 10.1088/0031-9155/60/13/5053
pubmed: 26061666
pmcid: 26061666
Geng, C., Gates, D., Bronk, L., Ma, D. & Guan, F. Physical parameter optimization scheme for radiobiological studies of charged particle therapy. Physica Medica 51, 13–21, https://doi.org/10.1016/j.ejmp.2018.06.001 (2018).
doi: 10.1016/j.ejmp.2018.06.001
pubmed: 30278981
pmcid: 30278981
Guan, F. et al. RBE Model-Based Biological Dose Optimization for Proton Radiobiology Studies. International Journal of Particle Therapy 5, 160–171 (2018).
doi: 10.14338/IJPT-18-00007.1
pubmed: 30338268
pmcid: 30338268
Cao, W., Lim, G., Li, Y., Zhu, X. & Zhang, X. Improved beam angle arrangement in intensity modulated proton therapy treatment planning for localized prostate cancer. Cancers 7, 574–584 (2015).
doi: 10.3390/cancers7020574
pubmed: 25831258
pmcid: 25831258
Cao, W. et al. Uncertainty incorporated beam angle optimization for IMPT treatment planning. Medical Physics 39, 5248–5256 (2012).
doi: 10.1118/1.4737870
pubmed: 22894449
pmcid: 22894449
Bassler, N., Jäkel, O., Søndergaard, C. S. & Petersen, J. B. Dose-and LET-painting with particle therapy. Acta oncologica 49, 1170–1176 (2010).
doi: 10.3109/0284186X.2010.510640
pubmed: 20831510
pmcid: 20831510
Bassler, N. et al. LET-painting increases tumour control probability in hypoxic tumours. Acta oncologica 53, 25–32 (2014).
doi: 10.3109/0284186X.2013.832835
pubmed: 24020629
pmcid: 24020629
Cao, W. et al. Linear energy transfer incorporated intensity modulated proton therapy optimization. Physics in Medicine and Biology 63, 015013 (2017).
doi: 10.1088/1361-6560/aa9a2e
pubmed: 5815879
pmcid: 5815879
Lee, S. J., Lee, H. J. & Moon, D. H. Quantitative analysis of thymidine kinase 1 and 5′(3′)-deoxyribonucleotidase mRNA expression: the role of fluorothymidine uptake. Anticancer research 31, 2135–2139 (2011).
Carmichael, J., DeGraff, W. G., Gazdar, A. F., Minna, J. D. & Mitchell, J. B. Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemosensitivity testing. Cancer research 47, 936–942 (1987).
Bronk, L. High-Throughput Mapping of The Biological Effects of Particle Therapy (2017).
Groesser, T. et al. Persistence of gamma-H2AX and 53BP1 foci in proliferating and non-proliferating human mammary epithelial cells after exposure to gamma-rays or iron ions. International journal of radiation biology 87, 696–710, https://doi.org/10.3109/09553002.2010.549535 (2011).
doi: 10.3109/09553002.2010.549535
pubmed: 21271785
pmcid: 21271785
Markova, E., Schultz, N. & Belyaev, I. Y. Kinetics and dose-response of residual 53BP1/gamma-H2AX foci: co-localization, relationship with DSB repair and clonogenic survival. International journal of radiation biology 83, 319–329, https://doi.org/10.1080/09553000601170469 (2007).
doi: 10.1080/09553000601170469
pubmed: 17457757
pmcid: 17457757
Elsasser, T. et al. Quantification of the relative biological effectiveness for ion beam radiotherapy: direct experimental comparison of proton and carbon ion beams and a novel approach for treatment planning. International journal of radiation oncology, biology, physics 78, 1177–1183, https://doi.org/10.1016/j.ijrobp.2010.05.014 (2010).
doi: 10.1016/j.ijrobp.2010.05.014
pubmed: 20732758
pmcid: 20732758
Guan, F. et al. A mechanistic relative biological effectiveness model-based biological dose optimization for charged particle radiobiology studies. Physics in Medicine & Biology 64, 015008 (2018).
doi: 10.1088/1361-6560/aaf5df
Zaider, M., Rossi, B. H. H. & Zaider, M. Microdosimetry and its Applications (Springer, 1996).
ICRU. Report 36: Microdosimetry, International Commission onRadiation Units and Measurements, Bethesda, MD, 1983. ICRU (1983).
Lindborg, L. & Waker, A. Microdosimetry: Experimental Methods and Applications (CRC Press, 2017).
Perl, J., Shin, J., Schumann, J., Faddegon, B. & Paganetti, H. TOPAS: an innovative proton Monte Carlo platform for research and clinical applications. Medical Physics 39, 6818–6837, https://doi.org/10.1118/1.4758060 (2012).
doi: 10.1118/1.4758060
pubmed: 23127075
pmcid: 23127075
Incerti, S. et al. The Geant4-DNA project. International Journal of Modeling, Simulation, and Scientific Computing 1, 157–178 (2010).
doi: 10.1142/S1793962310000122
Schuemann, J. et al. TOPAS-nBio: An Extension to the TOPAS Simulation Toolkit for Cellular and Sub-cellular Radiobiology. Radiation research 191, 125–138 (2018).
doi: 10.1667/RR15226.1
Burigo, L., Pshenichnov, I., Mishustin, I. & Bleicher, M. Microdosimetry spectra and RBE of 1 H, 4 He, 7 Li and 12 C nuclei in water studied with Geant4. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 320, 89–99 (2014).
doi: 10.1016/j.nimb.2013.10.018
Hawkins, R. A microdosimetric-kinetic model of cell death from exposure to ionizing radiation of any LET, with experimental and clinical applications. International journal of radiation biology 69, 739–755 (1996).
doi: 10.1080/095530096145481
pubmed: 8691026
pmcid: 8691026
Hawkins, R. B. A microdosimetric‐kinetic theory of the dependence of the RBE for cell death on LET. Medical Physics 25, 1157–1170 (1998).
doi: 10.1118/1.598307
pubmed: 9682201
pmcid: 9682201
Kase, Y. et al. Microdosimetric measurements and estimation of human cell survival for heavy-ion beams. Radiation research 166, 629–638 (2006).
doi: 10.1667/RR0536.1
pubmed: 17007551
pmcid: 17007551
Carlson, D. J., Stewart, R. D., Semenenko, V. A. & Sandison, G. A. Combined use of Monte Carlo DNA damage simulations and deterministic repair models to examine putative mechanisms of cell killing. Radiation research 169, 447–459 (2008).
doi: 10.1667/RR1046.1
pubmed: 18363426
pmcid: 18363426
Frese, M. C., Yu, V. K., Stewart, R. D. & Carlson, D. J. A mechanism-based approach to predict the relative biological effectiveness of protons and carbon ions in radiation therapy. International journal of radiation oncology, biology, physics 83, 442–450, https://doi.org/10.1016/j.ijrobp.2011.06.1983 (2012).
doi: 10.1016/j.ijrobp.2011.06.1983
pubmed: 22099045
pmcid: 22099045
Kamp, F. et al. Fast biological modeling for voxel-based heavy ion treatment planning using the mechanistic repair-misrepair-fixation model and nuclear fragment spectra. International Journal of Radiation Oncology• Biology• Physics 93, 557–568 (2015).
doi: 10.1016/j.ijrobp.2015.07.2264
Jackson, S. P. & Bartek, J. The DNA-damage response in human biology and disease. Nature 461, 1071–1078, https://doi.org/10.1038/nature08467 (2009).
doi: 10.1038/nature08467
pubmed: 19847258
pmcid: 19847258
ICRU. Fundamental quantities and units for ionizing radiation (ICRU Report 85). J ICRU 11, 1–31, https://doi.org/10.1093/jicru/ndr011 (2011).
doi: 10.1093/jicru/ndr011
Patel, D. et al. Optimization of Monte Carlo particle transport parameters and validation of a novel high throughput experimental setup to measure the biological effects of particle beams. Medical Physics 44, 6061–6073 (2017).
doi: 10.1002/mp.12568
pubmed: 28880368
pmcid: 28880368
Casolaro, P. et al. Real-time dosimetry with radiochromic films. Scientific Reports 9, 5307, https://doi.org/10.1038/s41598-019-41705-0 (2019).
doi: 10.1038/s41598-019-41705-0
pubmed: 30926839
pmcid: 6440967
Perles, L., Mirkovic, D., Anand, A., Titt, U. & Mohan, R. LET dependence of the response of EBT2 films in proton dosimetry modeled as a bimolecular chemical reaction. Physics in Medicine & Biology 58, 8477 (2013).
Smith, A. et al. The M. D. Anderson proton therapy system. Medical Physics 36, 4068–4083 (2009).
pubmed: 19810479
Zhu, X. R. et al. Commissioning dose computation models for spot scanning proton beams in water for a commercially available treatment planning system. Medical Physics 40, 041723, https://doi.org/10.1118/1.4798229 (2013).
doi: 10.1118/1.4798229
pubmed: 23556893
pmcid: 3631269
Gillin, M. T. et al. Commissioning of the discrete spot scanning proton beam delivery system at the University of Texas M.D. Anderson Cancer Center, Proton Therapy Center, Houston. Medical Physics 37, 154–163 (2010).
pubmed: 20175477
Lundholt, B. K., Scudder, K. M. & Pagliaro, L. A simple technique for reducing edge effect in cell-based assays. Journal of biomolecular screening 8, 566–570, https://doi.org/10.1177/1087057103256465 (2003).
doi: 10.1177/1087057103256465
pubmed: 14567784
pmcid: 14567784