Circulating human microRNA biomarkers of oxalic acid-induced acute kidney injury.
Acute kidney injury
Nephrotoxicity
Oxalate poisoning
Serum miRNA
Journal
Archives of toxicology
ISSN: 1432-0738
Titre abrégé: Arch Toxicol
Pays: Germany
ID NLM: 0417615
Informations de publication
Date de publication:
05 2020
05 2020
Historique:
received:
25
12
2019
accepted:
11
02
2020
pubmed:
23
2
2020
medline:
23
4
2021
entrez:
23
2
2020
Statut:
ppublish
Résumé
Oxalic acid-induced nephrotoxicity and acute kidney injury result from formation of calcium oxalate crystals. Oxalic acid-induced acute kidney injury is a significant problem in many parts of the world. Circulating biomarkers that can accurately and reproducibly detect acute kidney injury are highly desirable. We used a high sensitivity discovery platform to identify signature microRNAs to distinguish healthy individuals never exposed to oxalic acid (n = 4) from those who were exposed to oxalic acid but had no injury (NOAKI; n = 4), moderate injury (AKIN2; n = 4) or severe injury (AKIN3; n = 4). Longitudinal analyses identified 4-8 h post-ingestion as the best time to detect AKIN2/3. We validated a signature of 53 microRNAs identified in the discovery, in a second cohort of individuals exposed to oxalic acid (NOAKI = 11, AKIN2 = 8 and AKIN3 = 18) and healthy controls (n = 19). Thirteen microRNAs were significantly downregulated in acute kidney injury patients compared to NOAKI within 8-h post-ingestion. Five microRNAs (miR-20a, miR-92a, miR-93, miR-195, miR-451) had a highly significant correlation with normalized urinary albumin, serum creatinine at 24 h and creatinine clearance. Logistic regression of these microRNAs had AUC-ROC of 0.85 predicting AKIN2/3 and discriminated patients from healthy controls (AUC-ROC = 0.93). mRNA targets of these microRNAs identified oxidative stress pathways of nephrotoxicity in proximal tubule and glomeruli nephrotoxicity. In conclusion, the downregulation of multiple circulating microRNAs in patients correlated with the severity of oxalic acid-induced acute kidney injury. A set of microRNAs (miR-20a, miR-92a, miR-93, miR-195, miR-451) could be promising biomarkers for early detection of oxalic acid-induced acute kidney injury.
Identifiants
pubmed: 32086547
doi: 10.1007/s00204-020-02679-5
pii: 10.1007/s00204-020-02679-5
doi:
Substances chimiques
Biomarkers
0
Circulating MicroRNA
0
MicroRNAs
0
Oxalic Acid
9E7R5L6H31
Creatinine
AYI8EX34EU
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1725-1737Références
Abeysekera RA, Wijetunge S, Nanayakkara N, Wazil AW, Ratnatunga NV, Jayalath T, Medagama A (2015) Star fruit toxicity: a cause of both acute kidney injury and chronic kidney disease: a report of two cases. BMC Res Notes 8:796. https://doi.org/10.1186/s13104-015-1640-8
doi: 10.1186/s13104-015-1640-8
pubmed: 26680759
pmcid: 4683968
Ananna MA, Iqbal S, Samad T, Rahim MA, Haque WMM, Chowdhury TA, Arafat SM, Mitra P (2015) SP229 Nephrotoxicity caused by star fruit ingestion in 20 patients and their outcome: an experience from Bangladesh. Nephrol Dial Transplant 30:3453. https://doi.org/10.1093/ndt/gfv190.41
doi: 10.1093/ndt/gfv190.41
Arvin P, Samimagham HR, Montazerghaem H, Khayatian M, Mahboobi H, Ghadiri Soufi F (2017) Early detection of cardiac surgery associated acute kidney injury by microRNA-21. Bratisl Lek Listy 118:626–631. https://doi.org/10.4149/BLL_2017_120
doi: 10.4149/BLL_2017_120
pubmed: 29198131
Barman AK, Goel R, Sharma M, Mahanta PJ (2016) Acute kidney injury associated with ingestion of star fruit: acute oxalate nephropathy. Indian J Nephrol 26:446–448. https://doi.org/10.4103/0971-4065.175978
doi: 10.4103/0971-4065.175978
pubmed: 27942177
pmcid: 5131384
Brandenburger T, Somoza AS, Devaux Y, Lorenzen JM (2018) Noncoding RNAs in acute kidney injury. Kidney Int 94:870–881. https://doi.org/10.1016/j.kint.2018.06.033
doi: 10.1016/j.kint.2018.06.033
pubmed: 30348304
Chang JM, Hwang SJ, Kuo HT, Tsai JC, Guh JY, Chen HC, Tsai JH, Lai YH (2000) Fatal outcome after ingestion of star fruit (Averrhoa carambola) in uremic patients. Am J Kidney Dis 35:189–193
doi: 10.1016/S0272-6386(00)70325-8
Chen YQ, Wang XX, Yao XM, Zhang DL, Yang XF, Tian SF, Wang NS (2011) MicroRNA-195 promotes apoptosis in mouse podocytes via enhanced caspase activity driven by BCL2 insufficiency. Am J Nephrol 34:549–559. https://doi.org/10.1159/000333809
doi: 10.1159/000333809
pubmed: 22123611
Dassanayake U, Gnanathasan CA (2012) Acute renal failure following oxalic acid poisoning: a case report. J Occup Med Toxicol 7:17. https://doi.org/10.1186/1745-6673-7-17
doi: 10.1186/1745-6673-7-17
pubmed: 22978510
pmcid: 3527234
Engedal N, Zerovnik E, Rudov A, Galli F, Olivieri F, Procopio AD, Rippo MR, Monsurro V, Betti M, Albertini MC (2018) From oxidative stress damage to pathways networks, and autophagy via microRNAs. Oxidative Med Cell Longev 2018:4968321. https://doi.org/10.1155/2018/4968321
doi: 10.1155/2018/4968321
Fan PC, Chen CC, Peng CC, Chang CH, Yang CH, Yang C, Chu LJ, Chen YC, Yang CW, Chang YS, Chu PH (2019) A circulating miRNA signature for early diagnosis of acute kidney injury following acute myocardial infarction. J Transl Med 17:139. https://doi.org/10.1186/s12967-019-1890-7
doi: 10.1186/s12967-019-1890-7
pubmed: 31039814
pmcid: 6492315
Gawarammana IB, Ariyananda PL, Palangasinghe C, De Silva NG, Fernando K, Vidanapathirana M, Kuruppuarachchi MA, Munasinghe MA, Dawson AH (2009) Emerging epidemic of fatal human self-poisoning with a washing powder in Southern Sri Lanka: a prospective observational study. Clin Toxicol (Phila) 47:407–411. https://doi.org/10.1080/15563650902915320
doi: 10.1080/15563650902915320
Gummin DD, Mowry JB, Spyker DA, Brooks DE, Beuhler MC, Rivers LJ, Hashem HA, Ryan ML (2019) 2018 Annual Report of the American Association of Poison Control Centers' National Poison Data System (NPDS): 36th Annual Report. Clin Toxicol (Phila) 57:1220–1413. https://doi.org/10.1080/15563650.2019.1677022
doi: 10.1080/15563650.2019.1677022
Jelliffe R (2002) Estimation of creatinine clearance in patients with unstable renal function, without a urine specimen. Am J Nephrol 22:320–324. https://doi.org/10.1159/000065221
doi: 10.1159/000065221
pubmed: 12169862
Khan SR (2004) Crystal-induced inflammation of the kidneys: results from human studies, animal models, and tissue-culture studies. Clin Exp Nephrol 8:75–88. https://doi.org/10.1007/s10157-004-0292-0
doi: 10.1007/s10157-004-0292-0
pubmed: 15235923
Khan SR (2013) Reactive oxygen species as the molecular modulators of calcium oxalate kidney stone formation: evidence from clinical and experimental investigations. J Urol 189:803–811. https://doi.org/10.1016/j.juro.2012.05.078
doi: 10.1016/j.juro.2012.05.078
pubmed: 23022011
Koturbash I, Tolleson WH, Guo L, Yu D, Chen S, Hong H, Mattes W, Ning B (2015) microRNAs as pharmacogenomic biomarkers for drug efficacy and drug safety assessment. Biomark Med 9:1153–1176. https://doi.org/10.2217/bmm.15.89
doi: 10.2217/bmm.15.89
pubmed: 26501795
pmcid: 5712454
Kruse JA (2012) Methanol and ethylene glycol intoxication. Crit Care Clin 28:661–711. https://doi.org/10.1016/j.ccc.2012.07.002
doi: 10.1016/j.ccc.2012.07.002
pubmed: 22998995
Lan C, Chen D, Liang X, Huang J, Zeng T, Duan X, Chen K, Lai Y, Yang D, Li S, Jiang C, Wu W (2017) Integrative analysis of miRNA and mRNA expression profiles in calcium oxalate nephrolithiasis rat model. Biomed Res Int 2017:8306736. https://doi.org/10.1155/2017/8306736
doi: 10.1155/2017/8306736
pubmed: 29392139
pmcid: 5748115
Li X, Ma J, Shi W, Su Y, Fu X, Yang Y, Lu J, Yue Z (2016) Calcium oxalate induces renal injury through calcium-sensing receptor. Oxidative Med Cell Longev 2016:5203801. https://doi.org/10.1155/2016/5203801
doi: 10.1155/2016/5203801
Liu Z, Jiang H, Yang J, Wang T, Ding Y, Liu J, Wang S, Ye Z (2016) Analysis of altered microRNA expression profiles in the kidney tissues of ethylene glycol-induced hyperoxaluric rats. Mol Med Rep 14:4650–4658. https://doi.org/10.3892/mmr.2016.5833
doi: 10.3892/mmr.2016.5833
pubmed: 27748900
pmcid: 5102036
Lorenzen JM, Kielstein JT, Hafer C, Gupta SK, Kumpers P, Faulhaber-Walter R, Haller H, Fliser D, Thum T (2011) Circulating miR-210 predicts survival in critically ill patients with acute kidney injury. Clin J Am Soc Nephrol 6:1540–1546. https://doi.org/10.2215/CJN.00430111
doi: 10.2215/CJN.00430111
pubmed: 21700819
McMartin K (2009) Are calcium oxalate crystals involved in the mechanism of acute renal failure in ethylene glycol poisoning? Clin Toxicol (Phila) 47:859–869. https://doi.org/10.3109/15563650903344793
doi: 10.3109/15563650903344793
Mohamed F, Buckley NA, Jayamanne S, Pickering JW, Peake P, Palangasinghe C, Wijerathna T, Ratnayake I, Shihana F, Endre ZH (2015) Kidney damage biomarkers detect acute kidney injury but only functional markers predict mortality after paraquat ingestion. Toxicol Lett 237:140–150. https://doi.org/10.1016/j.toxlet.2015.06.008
doi: 10.1016/j.toxlet.2015.06.008
pubmed: 26071311
Muratsu-Ikeda S, Nangaku M, Ikeda Y, Tanaka T, Wada T, Inagi R (2012) Downregulation of miR-205 modulates cell susceptibility to oxidative and endoplasmic reticulum stresses in renal tubular cells. PLoS ONE 7:e41462. https://doi.org/10.1371/journal.pone.0041462
doi: 10.1371/journal.pone.0041462
pubmed: 22859986
pmcid: 3408438
Nair S, George J, Kumar S, Gracious N (2014) Acute oxalate nephropathy following ingestion of Averrhoa bilimbi juice. Case Rep Nephrol 2014:240936. https://doi.org/10.1155/2014/240936
doi: 10.1155/2014/240936
pubmed: 24995136
pmcid: 4065667
Neto MM, da Costa JA, Garcia-Cairasco N, Netto JC, Nakagawa B, Dantas M (2003) Intoxication by star fruit (Averrhoa carambola) in 32 uraemic patients: treatment and outcome. Nephrol Dial Transplant 18:120–125
doi: 10.1093/ndt/18.1.120
Neto MM, Silva GE, Costa RS, Vieira Neto OM, Garcia-Cairasco N, Lopes NP, Haendchen PF, Silveira C, Mendes AR, Filho RR, Dantas M (2009) Star fruit: simultaneous neurotoxic and nephrotoxic effects in people with previously normal renal function. NDT Plus 2:485–488. https://doi.org/10.1093/ndtplus/sfp108
doi: 10.1093/ndtplus/sfp108
pubmed: 25949386
pmcid: 4421323
Ong KL, Tan TH, Cheung WL (1997) Potassium permanganate poisoning—a rare cause of fatal self poisoning. J Accid Emerg Med 14:43–45. https://doi.org/10.1136/emj.14.1.43
doi: 10.1136/emj.14.1.43
pubmed: 9023625
pmcid: 1342846
Pavkovic M, Robinson-Cohen C, Chua AS, Nicoara O, Cardenas-Gonzalez M, Bijol V, Ramachandran K, Hampson L, Pirmohamed M, Antoine DJ, Frendl G, Himmelfarb J, Waikar SS, Vaidya VS (2016) Detection of drug-induced acute kidney injury in humans using urinary KIM-1, miR-21, -200c, and -423. Toxicol Sci 152:205–213. https://doi.org/10.1093/toxsci/kfw077
doi: 10.1093/toxsci/kfw077
pubmed: 27122240
pmcid: 5009468
Redza-Dutordoir M, Averill-Bates DA (2016) Activation of apoptosis signalling pathways by reactive oxygen species. Biochim Biophys Acta 1863:2977–2992. https://doi.org/10.1016/j.bbamcr.2016.09.012
doi: 10.1016/j.bbamcr.2016.09.012
pubmed: 27646922
Rhyu DY, Yang Y, Ha H, Lee GT, Song JS, Uh ST, Lee HB (2005) Role of reactive oxygen species in TGF-beta1-induced mitogen-activated protein kinase activation and epithelial–mesenchymal transition in renal tubular epithelial cells. J Am Soc Nephrol 16:667–675. https://doi.org/10.1681/ASN.2004050425
doi: 10.1681/ASN.2004050425
pubmed: 15677311
Scaranello KL, Alvares VR, Carneiro DM, Barros FH, Gentil TM, Thomaz MJ, Pereira BJ, Pereira MB, Leme GM, Diz MC, Laranja SM (2014) Star fruit as a cause of acute kidney injury. J Bras Nefrol 36:246–249
doi: 10.5935/0101-2800.20140036
Vomund S, Schafer A, Parnham MJ, Brune B, von Knethen A (2017) Nrf2, the master regulator of anti-oxidative responses. Int J Mol Sci 18:2772. https://doi.org/10.3390/ijms18122772
doi: 10.3390/ijms18122772
pmcid: 5751370
Wang B, Wu B, Liu J, Yao W, Xia D, Li L, Chen Z, Ye Z, Yu X (2014) Analysis of altered microRNA expression profiles in proximal renal tubular cells in response to calcium oxalate monohydrate crystal adhesion: implications for kidney stone disease. PLoS ONE 9:e101306. https://doi.org/10.1371/journal.pone.0101306
doi: 10.1371/journal.pone.0101306
pubmed: 24983625
pmcid: 4077747
Wijerathna TM, Gawarammana IB, Dissanayaka DM, Palanagasinghe C, Shihana F, Dassanayaka G, Shahmy S, Endre ZH, Mohamed F, Buckley NA (2017) Serum creatinine and cystatin C provide conflicting evidence of acute kidney injury following acute ingestion of potassium permanganate and oxalic acid. Clin Toxicol (Phila) 55:970–976. https://doi.org/10.1080/15563650.2017.1326607
doi: 10.1080/15563650.2017.1326607
Wijerathna TM, Mohamed F, Dissanayaka D, Gawarammana I, Palangasinghe C, Shihana F, Endre Z, Shahmy S, Buckley NA (2018) Albuminuria and other renal damage biomarkers detect acute kidney injury soon after acute ingestion of oxalic acid and potassium permanganate. Toxicol Lett 299:182–190. https://doi.org/10.1016/j.toxlet.2018.10.002
doi: 10.1016/j.toxlet.2018.10.002
pubmed: 30300734
Wong W, Farr R, Joglekar M, Januszewski A, Hardikar A (2015) Probe-based real-time PCR approaches for quantitative measurement of microRNAs. J Vis Exp. https://doi.org/10.3791/52586
doi: 10.3791/52586
pubmed: 26327431
pmcid: 4692540
Young RJ, Critchley JA, Young KK, Freebairn RC, Reynolds AP, Lolin YI (1996) Fatal acute hepatorenal failure following potassium permanganate ingestion. Hum Exp Toxicol 15:259–261. https://doi.org/10.1177/096032719601500313
doi: 10.1177/096032719601500313
pubmed: 8839216
Zhang Z, Luo X, Ding S, Chen J, Chen T, Chen X, Zha H, Yao L, He X, Peng H (2012) MicroRNA-451 regulates p38 MAPK signaling by targeting of Ywhaz and suppresses the mesangial hypertrophy in early diabetic nephropathy. FEBS Lett 586:20–26. https://doi.org/10.1016/j.febslet.2011.07.042
doi: 10.1016/j.febslet.2011.07.042
pubmed: 21827757
Zhou J, Chen H, Fan Y (2017) Systematic analysis of the expression profile of non-coding RNAs involved in ischemia/reperfusion-induced acute kidney injury in mice using RNA sequencing. Oncotarget 8:100196–100215. https://doi.org/10.18632/oncotarget.22130
doi: 10.18632/oncotarget.22130
pubmed: 29245971
pmcid: 5725013