The association between synovial fluid serine proteinase activity and response to intra-articular corticosteroid injection in psoriatic arthritis.
Adrenal Cortex Hormones
/ administration & dosage
Adult
Arthritis, Psoriatic
/ drug therapy
Biomarkers
/ metabolism
Drug Monitoring
/ methods
Female
Humans
Injections, Intra-Articular
Knee Joint
/ metabolism
Male
Middle Aged
Multivariate Analysis
Prospective Studies
Serine Proteases
/ metabolism
Synovial Fluid
/ metabolism
Intra-articular injection
Psoriatic arthritis
Serine proteases
Synovial fluid
Journal
Clinical rheumatology
ISSN: 1434-9949
Titre abrégé: Clin Rheumatol
Pays: Germany
ID NLM: 8211469
Informations de publication
Date de publication:
Aug 2020
Aug 2020
Historique:
received:
22
11
2019
accepted:
17
02
2020
revised:
06
02
2020
pubmed:
27
2
2020
medline:
10
4
2021
entrez:
27
2
2020
Statut:
ppublish
Résumé
Intra-articular corticosteroid (IAS) injections are often used for the immediate relief of pain and inflammation in the joint of psoriatic arthritis (PsA) patients. However, studies identifying factors that predict response to the IAS injections are lacking. We aimed to assess the usefulness of serine proteinase activity measurements in PsA synovial fluid (SF) samples obtained at the time of injection in predicting clinical response. The PsA patients with available SF samples from the knee joint were identified from the University of Toronto PsA cohort. Clinical response was defined as an absence of tenderness or swelling in the injected joint at the first post-injection visit, at either 3 or 6 months. SF proteinase activity was determined by measuring cleavage of fluorogenic tri-peptide substrates for trypsin-like (VPR-AMC and VLK-AMC) and chymotrypsin-like (AAPF-AMC) serine proteinases. Generalized estimating equation (GEE) models were used to investigate factors associated with response. A total of 32 patients with 60 injected joints and data available for follow-up at 3 or 6 months were included in the analysis, with 25 (41.7%) injected joints resulting in clinical response. Age, sex, active joint count, systemic medications and SF serine proteinase activity at the time of injection were included as covariates. Only treatment with biologics was significantly associated with response at 3 or 6 months in the multivariate reduced model (OR 3.02, p = 0.027). We could not demonstrate an association between SF serine proteinase activity and response to IAS injection. Biologic agents significantly improve the likelihood of achieving clinical response.
Identifiants
pubmed: 32100195
doi: 10.1007/s10067-020-05003-9
pii: 10.1007/s10067-020-05003-9
doi:
Substances chimiques
Adrenal Cortex Hormones
0
Biomarkers
0
Serine Proteases
EC 3.4.-
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
2355-2361Références
Jennings H, Hennessy K, Hendry GJ (2014) The clinical effectiveness of intra-articular corticosteroids for arthritis of the lower limb in juvenile idiopathic arthritis: a systematic review. Pediatr Rheumatol Online J 12:23. https://doi.org/10.1186/1546-0096-12-23
doi: 10.1186/1546-0096-12-23
pubmed: 24959104
pmcid: 4066295
Wallen M, Gillies D (2006) Intra-articular steroids and splints/rest for children with juvenile idiopathic arthritis and adults with rheumatoid arthritis. Cochrane Database Syst Rev 1:CD002824. https://doi.org/10.1002/14651858.CD002824.pub2
doi: 10.1002/14651858.CD002824.pub2
Juni P, Hari R, Rutjes AW, Fischer R, Silletta MG, Reichenbach S, da Costa BR (2015) Intra-articular corticosteroid for knee osteoarthritis. Cochrane Database Syst Rev 10:CD005328. https://doi.org/10.1002/14651858.CD005328.pub3
doi: 10.1002/14651858.CD005328.pub3
Coates LC, Kavanaugh A, Mease PJ, Soriano ER, Laura Acosta-Felquer M, Armstrong AW, Bautista-Molano W, Boehncke WH, Campbell W, Cauli A, Espinoza LR, FitzGerald O, Gladman DD, Gottlieb A, Helliwell PS, Husni ME, Love TJ, Lubrano E, McHugh N, Nash P, Ogdie A, Orbai AM, Parkinson A, O’Sullivan D, Rosen CF, Schwartzman S, Siegel EL, Toloza S, Tuong W, Ritchlin CT (2016) Group for research and assessment of psoriasis and psoriatic arthritis 2015 treatment recommendations for psoriatic arthritis. Arthritis & rheumatology (Hoboken, NJ) 68(5):1060–1071. https://doi.org/10.1002/art.39573
doi: 10.1002/art.39573
Carubbi F, Zugaro L, Cipriani P, Conchiglia A, Gregori L, Danniballe C, Letizia Pistoia M, Liakouli V, Ruscitti P, Ciccia F, Triolo G, Masciocchi C, Giacomelli R (2016) Safety and efficacy of intra-articular anti-tumor necrosis factor alpha agents compared to corticosteroids in a treat-to-target strategy in patients with inflammatory arthritis and monoarthritis flare. Int J Immunopathol Pharmacol 29(2):252–266. https://doi.org/10.1177/0394632015593220
doi: 10.1177/0394632015593220
pubmed: 26684633
Eder L, Chandran V, Ueng J, Bhella S, Lee KA, Rahman P, Pope A, Cook RJ, Gladman DD (2010) Predictors of response to intra-articular steroid injection in psoriatic arthritis. Rheumatology (Oxford) 49(7):1367–1373. https://doi.org/10.1093/rheumatology/keq102
doi: 10.1093/rheumatology/keq102
Kirwan JR (1995) The effect of glucocorticoids on joint destruction in rheumatoid arthritis. The Arthritis and Rheumatism Council Low-Dose Glucocorticoid Study Group. N Engl J Med 333(3):142–146. https://doi.org/10.1056/NEJM199507203330302
doi: 10.1056/NEJM199507203330302
pubmed: 7791815
Makrygiannakis D, af Klint E, Catrina SB, Botusan IR, Klareskog E, Klareskog L, Ulfgren AK, Catrina AI (2006) Intraarticular corticosteroids decrease synovial RANKL expression in inflammatory arthritis. Arthritis Rheum 54(5):1463–1472. https://doi.org/10.1002/art.21767
doi: 10.1002/art.21767
pubmed: 16646024
Oikonomopoulou K, Diamandis EP, Hollenberg MD, Chandran V (2018) Proteinases and their receptors in inflammatory arthritis: an overview. Nat Rev Rheumatol 14(3):170–180. https://doi.org/10.1038/nrrheum.2018.17
doi: 10.1038/nrrheum.2018.17
pubmed: 29416136
Martel-Pelletier J, Welsch DJ, Pelletier JP (2001) Metalloproteases and inhibitors in arthritic diseases. Best Pract Res Clin Rheumatol 15(5):805–829. https://doi.org/10.1053/berh.2001.0195
doi: 10.1053/berh.2001.0195
pubmed: 11812023
Burrage PS, Mix KS, Brinckerhoff CE (2006) Matrix metalloproteinases: role in arthritis. Front Biosci 11:529–543
doi: 10.2741/1817
MullerLadner U, Gay RE, Gay S (1996) Cysteine proteinases in arthritis and inflammation. Perspect Drug Discov 6:87–98. https://doi.org/10.1007/Bf02174047
doi: 10.1007/Bf02174047
Delaisse JM, Andersen TL, Engsig MT, Henriksen K, Troen T, Blavier L (2003) Matrix metalloproteinases (MMP) and cathepsin K contribute differently to osteoclastic activities. Microsc Res Tech 61(6):504–513. https://doi.org/10.1002/jemt.10374
doi: 10.1002/jemt.10374
pubmed: 12879418
Cunnane G, FitzGerald O, Hummel KM, Youssef PP, Gay RE, Gay S, Bresnihan B (2001) Synovial tissue protease gene expression and joint erosions in early rheumatoid arthritis. Arthritis Rheum 44(8):1744–1753. https://doi.org/10.1002/1529-0131(200108)44:8<1744::aid-art309>3.0.co;2-k
doi: 10.1002/1529-0131(200108)44:8<1744::aid-art309>3.0.co;2-k
pubmed: 11508424
Rengel Y, Ospelt C, Gay S (2007) Proteinases in the joint: clinical relevance of proteinases in joint destruction. Arthritis research & therapy 9(5):221. https://doi.org/10.1186/ar2304
doi: 10.1186/ar2304
Cretu D, Prassas I, Saraon P, Batruch I, Gandhi R, Diamandis EP, Chandran V (2014) Identification of psoriatic arthritis mediators in synovial fluid by quantitative mass spectrometry. Clin Proteomics 11(1):27. https://doi.org/10.1186/1559-0275-11-27
doi: 10.1186/1559-0275-11-27
pubmed: 25097465
pmcid: 4108225
Jadon DR, Sengupta R, Nightingale A, Lu H, Dunphy J, Green A, Elder JT, Nair RP, Korendowych E, Lindsay MA, McHugh NJ (2017) Serum bone-turnover biomarkers are associated with the occurrence of peripheral and axial arthritis in psoriatic disease: a prospective cross-sectional comparative study. Arthritis Res Ther 19(1):210. https://doi.org/10.1186/s13075-017-1417-7
doi: 10.1186/s13075-017-1417-7
pubmed: 28934972
pmcid: 5609020
Sun S, Bay-Jensen AC, Karsdal MA, Siebuhr AS, Zheng Q, Maksymowych WP, Christiansen TG, Henriksen K (2014) The active form of MMP-3 is a marker of synovial inflammation and cartilage turnover in inflammatory joint diseases. BMC Musculoskelet Disord 15:93. https://doi.org/10.1186/1471-2474-15-93
doi: 10.1186/1471-2474-15-93
pubmed: 24641725
pmcid: 4003863
Weitoft T, Larsson A, Ronnblom L (2008) Serum levels of sex steroid hormones and matrix metalloproteinases after intra-articular glucocorticoid treatment in female patients with rheumatoid arthritis. Ann Rheum Dis 67(3):422–424. https://doi.org/10.1136/ard.2007.081315
doi: 10.1136/ard.2007.081315
pubmed: 17878211
Ricklin D, Hajishengallis G, Yang K, Lambris JD (2010) Complement: a key system for immune surveillance and homeostasis. Nat Immunol 11(9):785–797. https://doi.org/10.1038/ni.1923
doi: 10.1038/ni.1923
pubmed: 20720586
pmcid: 2924908
Trouw LA, Pickering MC, Blom AM (2017) The complement system as a potential therapeutic target in rheumatic disease. Nat Rev Rheumatol 13(9):538–547. https://doi.org/10.1038/nrrheum.2017.125
doi: 10.1038/nrrheum.2017.125
pubmed: 28794515
So AK, Varisco PA, Kemkes-Matthes B, Herkenne-Morard C, Chobaz-Peclat V, Gerster JC, Busso N (2003) Arthritis is linked to local and systemic activation of coagulation and fibrinolysis pathways. J Thromb Haemost 1(12):2510–2515
doi: 10.1111/j.1538-7836.2003.00462.x
Busso N, Hamilton JA (2002) Extravascular coagulation and the plasminogen activator/plasmin system in rheumatoid arthritis. Arthritis Rheum 46(9):2268–2279. https://doi.org/10.1002/art.10498
doi: 10.1002/art.10498
pubmed: 12355473
Martel-Pelletier J, Faure MP, McCollum R, Mineau F, Cloutier JM, Pelletier JP (1991) Plasmin, plasminogen activators and inhibitor in human osteoarthritic cartilage. J Rheumatol 18(12):1863–1871
pubmed: 1724464
Nakano S, Ikata T, Kinoshita I, Kanematsu J, Yasuoka S (1999) Characteristics of the protease activity in synovial fluid from patients with rheumatoid arthritis and osteoarthritis. Clin Exp Rheumatol 17(2):161–170
pubmed: 10342041
Eissa A, Cretu D, Soosaipillai A, Thavaneswaran A, Pellett F, Diamandis A, Cevikbas F, Steinhoff M, Diamandis EP, Gladman D, Chandran V (2013) Serum kallikrein-8 correlates with skin activity, but not psoriatic arthritis, in patients with psoriatic disease. Clin Chem Lab Med 51(2):317–325. https://doi.org/10.1515/cclm-2012-0251
doi: 10.1515/cclm-2012-0251
pubmed: 23096109
Moore AR, Appelboam A, Kawabata K, Da Silva JA, D’Cruz D, Gowland G, Willoughby DA (1999) Destruction of articular cartilage by alpha 2 macroglobulin elastase complexes: role in rheumatoid arthritis. Ann Rheum Dis 58(2):109–113
doi: 10.1136/ard.58.2.109
Miyata J, Tani K, Sato K, Otsuka S, Urata T, Lkhagvaa B, Furukawa C, Sano N, Sone S (2007) Cathepsin G: the significance in rheumatoid arthritis as a monocyte chemoattractant. Rheumatol Int 27(4):375–382. https://doi.org/10.1007/s00296-006-0210-8
doi: 10.1007/s00296-006-0210-8
pubmed: 16977463
Milner JM, Patel A, Davidson RK, Swingler TE, Desilets A, Young DA, Kelso EB, Donell ST, Cawston TE, Clark IM, Ferrell WR, Plevin R, Lockhart JC, Leduc R, Rowan AD (2010) Matriptase is a novel initiator of cartilage matrix degradation in osteoarthritis. Arthritis Rheum 62(7):1955–1966. https://doi.org/10.1002/art.27476
doi: 10.1002/art.27476
pubmed: 20506309
Wilkinson DJ, Habgood A, Lamb HK, Thompson P, Hawkins AR, Desilets A, Leduc R, Steinmetzer T, Hammami M, Lee MS, Craik CS, Watson S, Lin H, Milner JM, Rowan AD (2017) Matriptase induction of metalloproteinase-dependent aggrecanolysis in vitro and in vivo: promotion of osteoarthritic cartilage damage by multiple mechanisms. Arthritis & rheumatology (Hoboken, NJ) 69(8):1601–1611. https://doi.org/10.1002/art.40133
doi: 10.1002/art.40133
Nigrovic PA, Lee DM (2007) Synovial mast cells: role in acute and chronic arthritis. Immunol Rev 217:19–37. https://doi.org/10.1111/j.1600-065X.2007.00506.x
doi: 10.1111/j.1600-065X.2007.00506.x
pubmed: 17498049
Nakano S, Mishiro T, Takahara S, Yokoi H, Hamada D, Yukata K, Takata Y, Goto T, Egawa H, Yasuoka S, Furouchi H, Hirasaka K, Nikawa T, Yasui N (2007) Distinct expression of mast cell tryptase and protease activated receptor-2 in synovia of rheumatoid arthritis and osteoarthritis. Clin Rheumatol 26(8):1284–1292. https://doi.org/10.1007/s10067-006-0495-8
doi: 10.1007/s10067-006-0495-8
pubmed: 17205215
Buckley MG, Walters C, Wong WM, Cawley MI, Ren S, Schwartz LB, Walls AF (1997) Mast cell activation in arthritis: detection of alpha- and beta-tryptase, histamine and eosinophil cationic protein in synovial fluid. Clin Sci (London, England : 1979) 93(4):363–370
doi: 10.1042/cs0930363
Compten SJ, Cairns JA, Holgate ST, Walls AF (1998) The role of mast cell tryptase in regulating endothelial cell proliferation, cytokine release, and adhesion molecule expression: tryptase induces expression of mRNA for IL-1b and IL-8 and stimulates the selective release of IL-8 from human umbilical vein endothelial cells. J Immunol 161(4):1939–1946
Malamud V, Vaaknin A, Abramsky O, Mor M, Burgess LE, Ben-Yehudah A (2013) Tryptase activates peripheral blood mononuclear cells causing the synthesis and release of TNF-alpha, IL-6, and IL-1 beta: possible relevance to multiple sclerosis. J Neuroimmunol 138:115–122
doi: 10.1016/S0165-5728(03)00090-0
Shin K, Nigrovic PA, Crish J, Boilard E, McNeil HP, Larabee KS, Adachi R, Gurish MF, Gobezie R, Stevens RL, Lee DM (2009) Mast cells contribute to autoimmune inflammatory arthritis via their tryptase/heparin complexes. J Immunol (Baltimore, Md : 1950) 182(1):647–656
doi: 10.4049/jimmunol.182.1.647
Shan L, van den Hoogen L, Meeldijk J, Kok HM, Jongeneel LH, Boes M, Wenink MH, Hack CE, Radstake TRDJ, van Roon JAG, Bovenschen N (2019) Increased intra-articular granzyme M may trigger local IFN-λ1/IL-29 response in rheumatoid arthritis. Clin Exp Rheumatol published online Jun 6. PubMed PMID: 31172927
Taylor W, Gladman D, Helliwell P, Marchesoni A, Mease P, Mielants H, Group CS (2006) Classification criteria for psoriatic arthritis: development of new criteria from a large international study. Arthritis Rheum 54(8):2665–2673. https://doi.org/10.1002/art.21972
doi: 10.1002/art.21972
Gladman DD, Shuckett R, Russell ML, Thorne JC, Schachter RK (1987) Psoriatic arthritis (PSA)--an analysis of 220 patients. Q J Med 62(238):127–141
pubmed: 3659255
Karim Z, Wakefield RJ, Quinn M, Conaghan PG, Brown AK, Veale DJ, O’Connor P, Reece R, Emery P (2004) Validation and reproducibility of ultrasonography in the detection of synovitis in the knee: a comparison with arthroscopy and clinical examination. Arthritis Rheum 50(2):387–394. https://doi.org/10.1002/art.20054
doi: 10.1002/art.20054
pubmed: 14872480
Giles JT, Mease P, Boers M, Bresnihan B, Conaghan PG, Heald A, Maksymowych WP, Maillefert JF, Simon L, Tsuji W, Wakefield R, Woodworth T, Schumacher HR, Bingham CO 3rd (2007) Assessing single joints in arthritis clinical trials. J Rheumatol 34(3):641–647
pubmed: 17343312
Gladman DD, Cook RJ, Schentag C, Feletar M, Inman RI, Hitchon C, Karsh J, Klinkhoff AV, Maksymowych WP, Mosher DP, Nair B, Stone MA (2004) The clinical assessment of patients with psoriatic arthritis: results of a reliability study of the spondyloarthritis research consortium of Canada. J Rheumatol 31(6):1126–1131
pubmed: 15170925
Gladman DD, Inman RD, Cook RJ, Maksymowych WP, Braun J, Davis JC, Landewe RB, Mease P, Brandt J, Vargas RB, Chandran V, Helliwell P, Kavanaugh A, O’Shea FD, Khan MA, Pipitone N, Rahman P, Reveille JD, Stone MA, Taylor W, Veale DJ, van der Heijde D (2007) International spondyloarthritis interobserver reliability exercise--the INSPIRE study: II. Assessment of peripheral joints, enthesitis, and dactylitis. J Rheumatol 34(8):1740–1745
pubmed: 17659754
Maricar N, Callaghan MJ, Felson DT, O’Neill TW (2013) Predictors of response to intra-articular steroid injections in knee osteoarthritis--a systematic review. Rheumatology (Oxford) 52(6):1022–1032. https://doi.org/10.1093/rheumatology/kes368
doi: 10.1093/rheumatology/kes368
Fatimah N, Salim B, Raja EU, Nasim A (2016) Predictors of response to intra-articular steroid injections in patients with osteoarthritis of the knee joint. Clin Rheumatol 35(10):2541–2547. https://doi.org/10.1007/s10067-016-3365-z
doi: 10.1007/s10067-016-3365-z
pubmed: 27475792
Maricar N, Parkes MJ, Callaghan MJ, Hutchinson CE, Gait AD, Hodgson R, Felson DT, O’Neill TW (2017) Structural predictors of response to intra-articular steroid injection in symptomatic knee osteoarthritis. Arthritis research & therapy 19(1):88. https://doi.org/10.1186/s13075-017-1292-2
doi: 10.1186/s13075-017-1292-2
Jahangier ZN, Jacobs JW, Swen WA, Moolenburgh JD, Bruyn GA, Griep EN, Bijlsma JW (2011) Can simple ultrasonography predict the clinical effect of intra-articular injection therapy of the knee joint? Clin Rheumatol 30(6):749–755. https://doi.org/10.1007/s10067-010-1614-0
doi: 10.1007/s10067-010-1614-0
pubmed: 21080021
Vivarelli M, D’Urbano LE, Insalaco A, Lunt M, Jury F, Tozzi AE, Ravelli A, Martini A, Donn R, De Benedetti F (2007) Macrophage migration inhibitory factor (MIF) and oligoarticular juvenile idiopathic arthritis (o-JIA): association of MIF promoter polymorphisms with response to intra-articular glucocorticoids. Clin Exp Rheumatol 25(5):775–781
pubmed: 18078632
Weitoft T, Ronnelid J, Knight A, Lysholm J, Saxne T, Larsson A (2014) Outcome predictors of intra-articular glucocorticoid treatment for knee synovitis in patients with rheumatoid arthritis - a prospective cohort study. Arthritis research & therapy 16(3):R129. https://doi.org/10.1186/ar4586
doi: 10.1186/ar4586
Colegrave N, Ruxton GD (2003) Confidence intervals are a more useful complement to nonsignificant tests than are power calculations. Behav Ecol 14(3):446–447
doi: 10.1093/beheco/14.3.446