Histopathology of diffusion-weighted imaging-positive lesions in cerebral amyloid angiopathy.
CAA
DWI+ lesions
Ischemia
Microinfarcts
Post-mortem MRI
Journal
Acta neuropathologica
ISSN: 1432-0533
Titre abrégé: Acta Neuropathol
Pays: Germany
ID NLM: 0412041
Informations de publication
Date de publication:
05 2020
05 2020
Historique:
received:
08
11
2019
accepted:
21
02
2020
revised:
25
01
2020
pubmed:
29
2
2020
medline:
9
6
2021
entrez:
29
2
2020
Statut:
ppublish
Résumé
Small subclinical hyperintense lesions are frequently encountered on brain diffusion-weighted imaging (DWI) scans of patients with cerebral amyloid angiopathy (CAA). Interpretation of these DWI+ lesions, however, has been limited by absence of histopathological examination. We aimed to determine whether DWI+ lesions represent acute microinfarcts on histopathology in brains with advanced CAA, using a combined in vivo MRI-ex vivo MRI-histopathology approach. We first investigated the histopathology of a punctate cortical DWI+ lesion observed on clinical in vivo MRI 7 days prior to death in a CAA case. Subsequently, we assessed the use of ex vivo DWI to identify similar punctate cortical lesions post-mortem. Intact formalin-fixed hemispheres of 12 consecutive cases with CAA and three non-CAA controls were subjected to high-resolution 3 T ex vivo DWI and T2 imaging. Small cortical lesions were classified as either DWI+/T2+ or DWI-/T2+. A representative subset of lesions from three CAA cases was selected for detailed histopathological examination. The DWI+ lesion observed on in vivo MRI could be matched to an area with evidence of recent ischemia on histopathology. Ex vivo MRI of the intact hemispheres revealed a total of 130 DWI+/T2+ lesions in 10/12 CAA cases, but none in controls (p = 0.022). DWI+/T2+ lesions examined histopathologically proved to be acute microinfarcts (classification accuracy 100%), characterized by presence of eosinophilic neurons on hematoxylin and eosin and absence of reactive astrocytes on glial fibrillary acidic protein-stained sections. In conclusion, we suggest that small DWI+ lesions in CAA represent acute microinfarcts. Furthermore, our findings support the use of ex vivo DWI as a method to detect acute microinfarcts post-mortem, which may benefit future histopathological investigations on the etiology of microinfarcts.
Identifiants
pubmed: 32108259
doi: 10.1007/s00401-020-02140-y
pii: 10.1007/s00401-020-02140-y
pmc: PMC7185568
mid: NIHMS1567735
doi:
Types de publication
Case Reports
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
799-812Subventions
Organisme : NIA NIH HHS
ID : K99 AG059893
Pays : United States
Organisme : NIA NIH HHS
ID : P30 AG062421
Pays : United States
Organisme : NIA NIH HHS
ID : R21 AG046657
Pays : United States
Organisme : NINDS NIH HHS
ID : R01 NS096730
Pays : United States
Organisme : NINDS NIH HHS
ID : RF1 NS110054
Pays : United States
Références
Lancet Neurol. 2012 Mar;11(3):272-82
pubmed: 22341035
Stroke. 2018 Feb;49(2):491-497
pubmed: 29335334
Neurology. 2001 Apr 10;56(7):914-20
pubmed: 11294929
J Cereb Blood Flow Metab. 2019 Jul 25;:271678X19865916
pubmed: 31342832
Neurology. 2019 Feb 26;92(9):e933-e943
pubmed: 30700595
Ann Neurol. 2012 Feb;71(2):199-205
pubmed: 22367992
Alzheimers Dement. 2012 Jan;8(1):1-13
pubmed: 22265587
J Vet Sci. 2015;16(1):75-85
pubmed: 25269716
Ann Neurol. 2019 Aug;86(2):279-292
pubmed: 31152566
Neurology. 2017 Nov 21;89(21):2136-2142
pubmed: 29070668
Am J Neurodegener Dis. 2014 Mar 28;3(1):19-32
pubmed: 24754000
Ann Neurol. 2011 Dec;70(6):871-80
pubmed: 22190361
Neurology. 2009 Apr 7;72(14):1230-5
pubmed: 19349602
Brain. 2011 Aug;134(Pt 8):2376-86
pubmed: 21841203
Lancet Neurol. 2017 Sep;16(9):730-740
pubmed: 28716371
Ann Neurol. 2019 Oct;86(4):582-592
pubmed: 31340067
Neuroimage. 1999 Feb;9(2):179-94
pubmed: 9931268
Neuroreport. 2009 Jul 15;20(11):990-6
pubmed: 19483658
Brain. 2016 Dec;139(Pt 12):3151-3162
pubmed: 27645801
Lancet. 2019 Jun 29;393(10191):2613-2623
pubmed: 31128924
Stroke. 2014 Jul;45(7):2115-7
pubmed: 24923720
J Cereb Blood Flow Metab. 2013 Mar;33(3):322-9
pubmed: 23250109
Am J Pathol. 1993 Feb;142(2):623-35
pubmed: 8434652
Brain Pathol. 2017 Jan;27(1):77-85
pubmed: 26844934
Neurology. 2019 Oct 22;93(17):e1627-e1634
pubmed: 31530710
Acta Neuropathol. 2004 Dec;108(6):524-30
pubmed: 15517310
Neurology. 1992 Jan;42(1):235-40
pubmed: 1370863
Neuroimage. 2009 Jul 1;46(3):775-85
pubmed: 19344686
Neurology. 2019 Sep 10;93(11):e1058-e1067
pubmed: 31391244
Front Med (Lausanne). 2018 Feb 20;5:31
pubmed: 29515998
Neuroimage. 2002 Oct;17(2):825-41
pubmed: 12377157
J Cereb Blood Flow Metab. 2017 Nov;37(11):3599-3614
pubmed: 28090802
Neuroimage. 2011 Jul 1;57(1):167-181
pubmed: 21473920
Neurology. 2012 Dec 11;79(24):2335-41
pubmed: 23197745
J Neurol. 2007 Mar;254(3):375-83
pubmed: 17345037
Hum Brain Mapp. 2011 Apr;32(4):544-63
pubmed: 20945352
Stroke. 2018 Mar;49(3):803-810
pubmed: 29459393
BMJ Open. 2018 Jan 21;8(1):e018160
pubmed: 29358426
Neurology. 2019 Apr 2;92(14):e1558-e1566
pubmed: 30850444
J Neurosci. 2012 Dec 12;32(50):17948-60
pubmed: 23238711
Neuroradiology. 2017 Jun;59(6):545-553
pubmed: 28540400
Front Cell Neurosci. 2013 Jan 30;7:3
pubmed: 23386810