A multimodal computer-aided diagnostic system for precise identification of renal allograft rejection: Preliminary results.


Journal

Medical physics
ISSN: 2473-4209
Titre abrégé: Med Phys
Pays: United States
ID NLM: 0425746

Informations de publication

Date de publication:
Jun 2020
Historique:
received: 10 10 2019
revised: 18 02 2020
accepted: 18 02 2020
pubmed: 5 3 2020
medline: 15 5 2021
entrez: 5 3 2020
Statut: ppublish

Résumé

Early assessment of renal allograft function post-transplantation is crucial to minimize and control allograft rejection. Biopsy - the gold standard - is used only as a last resort due to its invasiveness, high cost, adverse events (e.g., bleeding, infection, etc.), and the time for reporting. To overcome these limitations, a renal computer-assisted diagnostic (Renal-CAD) system was developed to assess kidney transplant function. The developed Renal-CAD system integrates data collected from two image-based sources and two clinical-based sources to assess renal transplant function. The imaging sources were the apparent diffusion coefficients (ADCs) extracted from 47 diffusion-weighted magnetic resonance imaging (DW-MRI) scans at 11 different b-values (b0, b50, b100, ..., b1000 s/mm Using a leave-one-subject-out cross-validation approach along with SAEs, the Renal-CAD system demonstrated 93.3% accuracy, 90.0% sensitivity, and 95.0% specificity in differentiating AR from NR. Robustness of the Renal-CAD system was also confirmed by the area under the curve value of 0.92. Using a stratified tenfold cross-validation approach, the Renal-CAD system demonstrated its reproducibility and robustness by a diagnostic accuracy of 86.7%, sensitivity of 80.0%, specificity of 90.0%, and AUC of 0.88. The obtained results demonstrate the feasibility and efficacy of accurate, noninvasive identification of AR at an early stage using the Renal-CAD system.

Identifiants

pubmed: 32130734
doi: 10.1002/mp.14109
pmc: PMC8524762
mid: NIHMS1746470
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

2427-2440

Subventions

Organisme : NIAID NIH HHS
ID : R15 AI135924
Pays : United States
Organisme : NIH HHS
ID : 1R15AI135924-01A1
Pays : United States
Organisme : NIH HHS
ID : 1R15AI135924-01A1
Pays : United States

Informations de copyright

© 2020 American Association of Physicists in Medicine.

Références

Eur Radiol. 2016 Feb;26(2):567-75
pubmed: 26017738
Magn Reson Med. 2010 Aug;64(2):616-22
pubmed: 20665805
Eur J Radiol. 2014 Dec;83(12):2114-2121
pubmed: 25452096
Nephrol Dial Transplant. 2008 Aug;23(8):2666-72
pubmed: 18308769
Transplantation. 2006 Sep 15;82(5):621-8
pubmed: 16969284
Kidney Int. 2010 Feb;77(4):299-311
pubmed: 19847156
Quant Imaging Med Surg. 2015 Jun;5(3):407-22
pubmed: 26029644
Br J Radiol. 2012 Jun;85(1014):e206-11
pubmed: 22215880
Am J Nephrol. 2011;34(5):476-82
pubmed: 22024476
Eur Radiol. 2017 Oct;27(10):4336-4344
pubmed: 28374076
Abdom Imaging. 2007 Jan-Feb;32(1):1-16
pubmed: 16447077
Pol J Radiol. 2014 May 08;79:94-8
pubmed: 24826200
Magn Reson Imaging. 2010 Jan;28(1):56-64
pubmed: 19577402
J Biomed Biotechnol. 2011;2011:318346
pubmed: 21331339
Zhejiang Da Xue Xue Bao Yi Xue Ban. 2010 Mar;39(2):163-7
pubmed: 20387244
Radiology. 2016 Jun;279(3):795-804
pubmed: 26744926
Radiology. 2010 Mar;254(3):783-92
pubmed: 20089719
BMC Nephrol. 2014 Oct 01;15:158
pubmed: 25270976
J Magn Reson Imaging. 2012 May;35(5):1133-8
pubmed: 22180302
Eur Radiol. 2010 Jun;20(6):1374-83
pubmed: 20013274
PLoS One. 2018 Jul 13;13(7):e0200082
pubmed: 30005069
Clin Chem. 2006 Jan;52(1):5-18
pubmed: 16332993
Nephrol Dial Transplant. 2018 Sep 1;33(suppl_2):ii22-ii28
pubmed: 30137579
Radiology. 2011 Apr;259(1):25-38
pubmed: 21436095
Int J Nephrol Renovasc Dis. 2018 Mar 13;11:103-112
pubmed: 29559807
Saudi J Kidney Dis Transpl. 2014 Nov;25(6):1143-7
pubmed: 25394428
Am J Kidney Dis. 2018 Mar;71(3 Suppl 1):A7
pubmed: 29477157
IEEE Trans Med Imaging. 2010 Jun;29(6):1310-20
pubmed: 20378467
IEEE Trans Neural Netw Learn Syst. 2016 Dec;27(12):2486-2498
pubmed: 26529786
J Magn Reson Imaging. 2016 Jul;44(1):112-21
pubmed: 26778459
Korean J Radiol. 2018 Mar-Apr;19(2):201-208
pubmed: 29520177
IEEE Trans Pattern Anal Mach Intell. 2013 Aug;35(8):1798-828
pubmed: 23787338

Auteurs

Mohamed Shehata (M)

BioImaging Lab, Department of Bioengineering, University of Louisville, Louisville, KY, 40208, USA.

Ahmed Shalaby (A)

BioImaging Lab, Department of Bioengineering, University of Louisville, Louisville, KY, 40208, USA.

Andrew E Switala (AE)

BioImaging Lab, Department of Bioengineering, University of Louisville, Louisville, KY, 40208, USA.

Maryam El-Baz (M)

BioImaging Lab, Department of Bioengineering, University of Louisville, Louisville, KY, 40208, USA.

Mohammed Ghazal (M)

Electrical and Computer Engineering Department, Abu Dhabi University, Abu Dhabi, 59911, UAE.

Luay Fraiwan (L)

Electrical and Computer Engineering Department, Abu Dhabi University, Abu Dhabi, 59911, UAE.

Ashraf Khalil (A)

Computer Science and Information Technology Department, Abu Dhabi University, Abu Dhabi, 59911, UAE.

Mohamed Abou El-Ghar (MA)

Urology and Nephrology Center, Radiology Department, Mansoura University, Mansoura, 35516, Egypt.

Mohamed Badawy (M)

Urology and Nephrology Center, Radiology Department, Mansoura University, Mansoura, 35516, Egypt.

Ashraf M Bakr (AM)

Pediatric Nephrology Unit, Mansoura University Children's Hospital, University of Mansoura, Mansoura, 35516, Egypt.

Amy Dwyer (A)

Kidney Disease Program, University of Louisville, Louisville, KY, 40202, USA.

Adel Elmaghraby (A)

Computer Engineering and Computer Science Department, University of Louisville, Louisville, KY, 40208, USA.

Guruprasad Giridharan (G)

Department of Bioengineering, University of Louisville, Louisville, KY, 40208, USA.

Robert Keynton (R)

Department of Bioengineering, University of Louisville, Louisville, KY, 40208, USA.

Ayman El-Baz (A)

Department of Bioengineering, University of Louisville, Louisville, KY, 40208, USA.
200 E Shipp Ave, Lutz 390 Hall, Room 419, Louisville, KY, 40208, USA.

Articles similaires

Humans Middle Aged Female Male Surveys and Questionnaires
Adolescent Child Female Humans Male
Humans Scoliosis Mobile Applications Retrospective Studies Artificial Intelligence

Classifications MeSH