Food additives: distribution and co-occurrence in 126,000 food products of the French market.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
04 03 2020
Historique:
received: 26 11 2019
accepted: 13 02 2020
entrez: 6 3 2020
pubmed: 7 3 2020
medline: 27 11 2020
Statut: epublish

Résumé

More than 330 food additives (e.g. artificial sweeteners, emulsifiers, dyes) are authorized in Europe, with a great variability of use across food products. The objective of this study was to investigate the distribution and co-occurrence of food additives in a large-scale database of foods and beverages available on the French market. The open access crowdsourced Open Food Facts database (https://world.openfoodfacts.org/) was used to retrieve the composition of food and beverage products commonly marketed on the French market (n = 126,556), based on the ingredients list. Clustering of food additive variables was used in order to determine groups of additives frequently co-occurring in food products. The clusters were confirmed by network analysis, using the eLasso method. Fifty-three-point eight percent of food products contained at least 1 food additive and 11.3% at least 5. Food categories most likely to contain food additives (in more than 85% of food items) were artificially sweetened beverages, ice creams, industrial sandwiches, biscuits and cakes. The most frequently used food additives were citric acid, lecithins and modified starches (>10,000 products each). Some food additives with suspected health effects also pertained to the top 50: sodium nitrite, potassium nitrate, carrageenan, monosodium glutamate, sulfite ammonia caramel, acesulfame K, sucralose, (di/tri/poly) phosphates, mono- and diglycerides of fatty acids, potassium sorbate, cochineal, potassium metabisulphite, sodium alginate, and bixin (>800 food products each). We identified 6 clusters of food additives frequently co-occurring in food products. Food additives are widespread in industrial French products and some clusters of additives frequently co-occurring in food products were identified. These results pave the way to future etiological studies merging composition data to food consumption data to investigate their association with chronic disease risk, in particular potential 'cocktail effects'.

Sections du résumé

BACKGROUND
More than 330 food additives (e.g. artificial sweeteners, emulsifiers, dyes) are authorized in Europe, with a great variability of use across food products.
OBJECTIVE
The objective of this study was to investigate the distribution and co-occurrence of food additives in a large-scale database of foods and beverages available on the French market.
DESIGN
The open access crowdsourced Open Food Facts database (https://world.openfoodfacts.org/) was used to retrieve the composition of food and beverage products commonly marketed on the French market (n = 126,556), based on the ingredients list. Clustering of food additive variables was used in order to determine groups of additives frequently co-occurring in food products. The clusters were confirmed by network analysis, using the eLasso method.
RESULTS
Fifty-three-point eight percent of food products contained at least 1 food additive and 11.3% at least 5. Food categories most likely to contain food additives (in more than 85% of food items) were artificially sweetened beverages, ice creams, industrial sandwiches, biscuits and cakes. The most frequently used food additives were citric acid, lecithins and modified starches (>10,000 products each). Some food additives with suspected health effects also pertained to the top 50: sodium nitrite, potassium nitrate, carrageenan, monosodium glutamate, sulfite ammonia caramel, acesulfame K, sucralose, (di/tri/poly) phosphates, mono- and diglycerides of fatty acids, potassium sorbate, cochineal, potassium metabisulphite, sodium alginate, and bixin (>800 food products each). We identified 6 clusters of food additives frequently co-occurring in food products.
CONCLUSIONS
Food additives are widespread in industrial French products and some clusters of additives frequently co-occurring in food products were identified. These results pave the way to future etiological studies merging composition data to food consumption data to investigate their association with chronic disease risk, in particular potential 'cocktail effects'.

Identifiants

pubmed: 32132606
doi: 10.1038/s41598-020-60948-w
pii: 10.1038/s41598-020-60948-w
pmc: PMC7055242
doi:

Substances chimiques

Food Additives 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

3980

Références

Monteiro, C. A. et al. Ultra-processed foods: what they are and how to identify them. Public Health Nutrition (2018).
Adams, J. & White, M. Characterisation of UK diets according to degree of food processing and associations with socio-demographics and obesity: cross-sectional analysis of UK National Diet and Nutrition Survey (2008–12). Int. J. Behav. Nutr. Phys. Act. 12, 160 (2015).
pubmed: 26684833 pmcid: 4683717 doi: 10.1186/s12966-015-0317-y
Steele, E. M. et al. Ultra-processed foods and added sugars in the US diet: evidence from a nationally representative cross-sectional study. BMJ Open. 6, e009892 (2016).
doi: 10.1136/bmjopen-2015-009892
Moubarac, J.-C., Batal, M., Louzada, M. L., Martinez Steele, E. & Monteiro, C. A. Consumption of ultra-processed foods predicts diet quality in Canada. Appetite. 108, 512–520 (2017).
pubmed: 27825941 doi: 10.1016/j.appet.2016.11.006 pmcid: 27825941
Poti, J. M., Mendez, M. A., Ng, S. W. & Popkin, B. M. Is the degree of food processing and convenience linked with the nutritional quality of foods purchased by US households? Am. J. Clin. Nutr. 101, 1251–1262 (2015).
pubmed: 25948666 pmcid: 4441809 doi: 10.3945/ajcn.114.100925
Slimani, N. et al. Contribution of highly industrially processed foods to the nutrient intakes and patterns of middle-aged populations in the European Prospective Investigation into Cancer and Nutrition study. Eur. J. Clin. Nutr. 63(Suppl 4), S206–225 (2009).
pubmed: 19888275 doi: 10.1038/ejcn.2009.82 pmcid: 19888275
ANSES. Etude Individuelle Nationale des Consommations Alimentaires 3 (INCA 3). (2017).
Mendonca, R. D. et al. Ultraprocessed food consumption and risk of overweight and obesity: the University of Navarra Follow-Up (SUN) cohort study. Am. J. Clin. Nutr. 104, 1433–1440 (2016).
pubmed: 27733404 doi: 10.3945/ajcn.116.135004 pmcid: 27733404
Mendonca, R. D. et al. Ultra-Processed Food Consumption and the Incidence of Hypertension in a Mediterranean Cohort: The Seguimiento Universidad de Navarra Project. Am. J. Hypertens. 30, 358–366 (2017).
pubmed: 27927627 pmcid: 27927627
Fiolet, T. et al. Consumption of ultra-processed foods and cancer risk: results from NutriNet-Santé prospective cohort. BMJ. k322, https://doi.org/10.1136/bmj.k322 (2018).
Schnabel, L. et al. Association Between Ultra-Processed Food Consumption and Functional Gastrointestinal Disorders: Results From the French NutriNet-Santé Cohort. Am. J. Gastroenterol. 113, 1217–1228 (2018).
pubmed: 29904158 doi: 10.1038/s41395-018-0137-1 pmcid: 29904158
Schnabel, L. et al. Association Between Ultraprocessed Food Consumption and Risk of Mortality Among Middle-aged Adults in France. JAMA Intern Med, https://doi.org/10.1001/jamainternmed.2018.7289 (2019).
pubmed: 30742202 pmcid: 6450295 doi: 10.1001/jamainternmed.2018.7289
Adjibade, M. et al. The Inflammatory Potential of the Diet Is Associated with Depressive Symptoms in Different Subgroups of the General Population. J.Nutr. 147, 879–887 (2017).
pubmed: 28356432 pmcid: 6636662 doi: 10.3945/jn.116.245167
Srour, B. et al. Ultra-processed food intake and risk of cardiovascular disease: prospective cohort study (NutriNet-Santé). BMJ 365, l1451 (2019).
pubmed: 31142457 pmcid: 6538975 doi: 10.1136/bmj.l1451
Rico-Campà, A. et al. Association between consumption of ultra-processed foods and all cause mortality: SUN prospective cohort study. BMJ 365, l1949 (2019).
pubmed: 31142450 pmcid: 6538973 doi: 10.1136/bmj.l1949
Kim, H., Hu, E. A. & Rebholz, C. M. Ultra-processed food intake and mortality in the United States: Results from the Third National Health and Nutrition Examination Survey (NHANES III 1988-1994). Public. Health Nutr. 22, 1777–1785 (2019).
pubmed: 30789115 pmcid: 6554067 doi: 10.1017/S1368980018003890
Monteiro, C. A., Cannon, G., Lawrence, M., Costa Louzada, M. L. da & Pereira Machado, P. Ultra-processed foods, diet quality, and health using the NOVA classification system. Rome, FAO (2019).
Hall, K. D. et al. Ultra-Processed Diets Cause Excess Calorie Intake and Weight Gain: An Inpatient Randomized Controlled Trial of Ad Libitum Food Intake. Cell Metab. 30, 67–77.e3 (2019).
pubmed: 31105044 doi: 10.1016/j.cmet.2019.05.008 pmcid: 31105044
Database on Food Additives. https://webgate.ec.europa.eu/foods_system/main/?sector=FAD&auth=SANCAS .
European Food Safety Authority. Food Additives. European Food Safety Authority https://www.efsa.europa.eu/en/topics/topic/food-additives.
Song, P., Wu, L. & Guan, W. Dietary Nitrates, Nitrites, and Nitrosamines Intake and the Risk of Gastric Cancer: A Meta-Analysis. Nutrients 7, 9872–9895 (2015).
pubmed: 26633477 pmcid: 4690057 doi: 10.3390/nu7125505
Quist, A. J. L. et al. Ingested nitrate and nitrite, disinfection by-products, and pancreatic cancer risk in postmenopausal women. Int. J. Cancer 142, 251–261 (2018).
pubmed: 28921575 doi: 10.1002/ijc.31055 pmcid: 28921575
Etemadi, A. et al. Mortality from different causes associated with meat, heme iron, nitrates, and nitrites in the NIH-AARP Diet and Health Study: population based cohort study. BMJ 357, j1957 (2017).
pubmed: 28487287 pmcid: 5423547 doi: 10.1136/bmj.j1957
Bhattacharyya, S., O-Sullivan, I., Katyal, S., Unterman, T. & Tobacman, J. K. Exposure to the common food additive carrageenan leads to glucose intolerance, insulin resistance and inhibition of insulin signalling in HepG2 cells and C57BL/6J mice. Diabetologia. 55, 194–203 (2012).
pubmed: 22011715 doi: 10.1007/s00125-011-2333-z pmcid: 22011715
Ataseven, N., Yüzbaşıoğlu, D., Keskin, A. Ç. & Ünal, F. Genotoxicity of monosodium glutamate. Food Chem. Toxicol. 91, 8–18 (2016).
pubmed: 26929995 doi: 10.1016/j.fct.2016.02.021 pmcid: 26929995
He, K. et al. Consumption of monosodium glutamate in relation to incidence of overweight in Chinese adults: China Health and Nutrition Survey (CHNS). Am. J. Clin. Nutr. 93, 1328–1336 (2011).
pubmed: 21471280 pmcid: 3095503 doi: 10.3945/ajcn.110.008870
Chakraborty, S. P. Patho-physiological and toxicological aspects of monosodium glutamate. Toxicol. Mech. Methods 29, 389–396 (2019).
pubmed: 30273089 doi: 10.1080/15376516.2018.1528649 pmcid: 30273089
Hagiwara, A. et al. A thirteen-week oral toxicity study of annatto extract (norbixin), a natural food color extracted from the seed coat of annatto (Bixa orellana L.), in Sprague–Dawley rats. Food Chem. Toxicol. 41, 1157–1164 (2003).
pubmed: 12842184 doi: 10.1016/S0278-6915(03)00104-2 pmcid: 12842184
Uysal, H., Semerdöken, S., Çolak, D. A. & Ayar, A. The hazardous effects of three natural food dyes on developmental stages and longevity of Drosophila melanogaster. Toxicol. Ind. Health. 31, 624–629 (2015).
pubmed: 23456813 doi: 10.1177/0748233713480206 pmcid: 23456813
Azad, M. B. et al. Nonnutritive sweeteners and cardiometabolic health: a systematic review and meta-analysis of randomized controlled trials and prospective cohort studies. CMAJ. 189, E929–E939 (2017).
pubmed: 28716847 pmcid: 5515645 doi: 10.1503/cmaj.161390
Bandyopadhyay, A., Ghoshal, S. & Mukherjee, A. Genotoxicity Testing of Low-Calorie Sweeteners: Aspartame, Acesulfame-K, and Saccharin. Drug. Chem. Toxicol. 31, 447–457 (2008).
pubmed: 18850355 doi: 10.1080/01480540802390270 pmcid: 18850355
Suez, J. et al. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature. 514, 181–186 (2014).
pubmed: 25231862 doi: 10.1038/nature13793 pmcid: 25231862
Soffritti, M. et al. Sucralose administered in feed, beginning prenatally through lifespan, induces hematopoietic neoplasias in male swiss mice. Int. J. Occup. Env. Health 22, 7–17 (2016).
doi: 10.1080/10773525.2015.1106075
Abou-Donia, M. B., El-Masry, E. M., Abdel-Rahman, A. A., McLendon, R. E. & Schiffman, S. S. Splenda alters gut microflora and increases intestinal p-glycoprotein and cytochrome p-450 in male rats. J. Toxicol. Environ. Health Part. A 71, 1415–1429 (2008).
pubmed: 18800291 doi: 10.1080/15287390802328630 pmcid: 18800291
Ritz, E., Hahn, K., Ketteler, M., Kuhlmann, M. K. & Mann, J. Phosphate additives in food-a health risk. Dtsch. Arztebl Int. 109, 49–55 (2012).
pubmed: 22334826 pmcid: 3278747
McCarty, M. F. & DiNicolantonio, J. J. Bioavailable dietary phosphate, a mediator of cardiovascular disease, may be decreased with plant-based diets, phosphate binders, niacin, and avoidance of phosphate additives. Nutr. 30, 739–747 (2014).
doi: 10.1016/j.nut.2013.12.010
Chassaing, B. et al. Dietary emulsifiers impact the mouse gut microbiota promoting colitis and metabolic syndrome. Nature. 519, 92–96 (2015).
pubmed: 25731162 pmcid: 4910713 doi: 10.1038/nature14232
Viennois, E., Merlin, D., Gewirtz, A. T. & Chassaing, B. Dietary Emulsifier-Induced Low-Grade Inflammation Promotes Colon Carcinogenesis. Cancer Res. 77, 27–40 (2017).
pubmed: 27821485 doi: 10.1158/0008-5472.CAN-16-1359 pmcid: 27821485
Viennois, E. & Chassaing, B. First victim, later aggressor: How the intestinal microbiota drives the pro-inflammatory effects of dietary emulsifiers? Gut Microbes. 9, 289–291 (2018).
pmcid: 6219590 doi: 10.1080/19490976.2017.1421885
Smith, T. J. S. et al. Caramel Color in Soft Drinks and Exposure to 4-Methylimidazole: A Quantitative Risk Assessment. PLoS One 10 (2015).
pubmed: 25693062 pmcid: 4333292 doi: 10.1371/journal.pone.0118138
International Agency for Research on Cancer. 4-Methylimidazole. In IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. vol. 101: Some Chemicals Present in Industrial and Consumer Products, Food and Drinking-water, pp. 447–459. (2013).
Bettini, S. et al. Food-grade TiO2 impairs intestinal and systemic immune homeostasis, initiates preneoplastic lesions and promotes aberrant crypt development in the rat colon. Sci. Rep. 7, 40373 (2017).
pubmed: 28106049 pmcid: 5247795 doi: 10.1038/srep40373
Sasaki, Y. F. et al. The comet assay with 8 mouse organs: results with 39 currently used food additives. Mutat. Res. 519, 103–119 (2002).
pubmed: 12160896 doi: 10.1016/S1383-5718(02)00128-6 pmcid: 12160896
Leo, L. et al. Occurrence of azo food dyes and their effects on cellular inflammatory responses. Nutrition. 46, 36–40 (2018).
pubmed: 29290353 doi: 10.1016/j.nut.2017.08.010 pmcid: 29290353
McCann, D. et al. Food additives and hyperactive behaviour in 3-year-old and 8/9-year-old children in the community: a randomised, double-blinded, placebo-controlled trial. Lancet 370, 1560–1567 (2007).
pubmed: 17825405 doi: 10.1016/S0140-6736(07)61306-3 pmcid: 17825405
Lau, K., McLean, W. G., Williams, D. P. & Howard, C. V. Synergistic interactions between commonly used food additives in a developmental neurotoxicity test. Toxicol. Sci. 90, 178–187 (2006).
pubmed: 16352620 doi: 10.1093/toxsci/kfj073 pmcid: 16352620
Başak, K. et al. Does maternal exposure to artificial food coloring additives increase oxidative stress in the skin of rats? Hum. Exp. Toxicol. 36, 1023–1030 (2017).
pubmed: 27852938 doi: 10.1177/0960327116678297 pmcid: 27852938
Stevens, L. J. et al. Mechanisms of behavioral, atopic, and other reactions to artificial food colors in children. Nutr. Rev. 71, 268–281 (2013).
pubmed: 23590704 doi: 10.1111/nure.12023 pmcid: 23590704
Chen, Z. et al. Combined effect of titanium dioxide nanoparticles and glucose on the cardiovascular system in young rats after oral administration. J Appl Toxicol, https://doi.org/10.1002/jat.3750 (2018).
pubmed: 30427543 doi: 10.1002/jat.3750 pmcid: 30427543
Amchova, P., Kotolova, H. & Ruda-Kucerova, J. Health safety issues of synthetic food colorants. Regul. Toxicol. Pharmacol. 73, 914–922 (2015).
pubmed: 26404013 doi: 10.1016/j.yrtph.2015.09.026 pmcid: 26404013
Codex General Standard for Food Additives (GSFA, Codex STAN 192-1995). http://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCODEX%2BSTAN%2B192-1995%252FCXS_192e.pdf (2018).
Julia, C. et al. Application of the British Food Standards Agency nutrient profiling system in a French food composition database. Br.J Nutr. 112, 1699–1705 (2014).
pubmed: 25277084 doi: 10.1017/S0007114514002761 pmcid: 25277084
Chavent, M., Kuentz-Simonet, V., Liquet, B. & Saracco, J. ClustOfVar: An R Package for the Clustering of Variables. J. Stat. Softw. 50, 1–16 (2012).
doi: 10.18637/jss.v050.i13
Kiers, H. A. L. Simple structure in component analysis techniques for mixtures of qualitative and quantitative variables. Psychometrika 56, 197–212 (1991).
doi: 10.1007/BF02294458
van Borkulo, C. D. et al. A new method for constructing networks from binary data. Sci. Rep. 4, 5918 (2014).
pubmed: 25082149 pmcid: 4118196 doi: 10.1038/srep05918
Julia, C., Etilé, F. & Hercberg, S. Front-of-pack Nutri-Score labelling in France: an evidence-based policy. Lancet Public. Health 3, e164 (2018).
pubmed: 29483002 doi: 10.1016/S2468-2667(18)30009-4 pmcid: 29483002
Egnell, M., Hercberg, S. & Julia, C. Development and validation of the Nutri-Score A colour-coded summary front-of-pack nutrition label. eFOOD Lab_International (2019).
Monteiro, C. A. et al. The UN Decade of Nutrition, the NOVA food classification and the trouble with ultra-processing. Public Health Nutr. 1–13, https://doi.org/10.1017/S1368980017000234 (2017).
pubmed: 28322183 doi: 10.1017/S1368980017000234 pmcid: 28322183
Monteiro, C. A. et al. NOVA. star. shines bright. 1(7), 28–38 (2016).
Moubarac, J.-C., Parra, D. C., Cannon, G. & Monteiro, C. A. Food Classification Systems Based on Food Processing: Significance and Implications for Policies and Actions: A Systematic Literature Review and Assessment. Curr. Obes. Rep. 3, 256–272 (2014).
pubmed: 26626606 doi: 10.1007/s13679-014-0092-0 pmcid: 26626606
Oqali. Bilan et évolution de l’utilisation des additifs dans les produits transformés. (2019).
Irwin, S. V., Fisher, P., Graham, E., Malek, A. & Robidoux, A. Sulfites inhibit the growth of four species of beneficial gut bacteria at concentrations regarded as safe for food. PLOS ONE 12, e0186629 (2017).
pubmed: 29045472 pmcid: 5646858 doi: 10.1371/journal.pone.0186629
Holder, M. K. & Chassaing, B. Impact of food additives on the gut-brain axis. Physiol. Behav. 192, 173–176 (2018).
pubmed: 29454065 doi: 10.1016/j.physbeh.2018.02.025 pmcid: 29454065
Zinöcker, M. K. & Lindseth, I. A. The Western Diet-Microbiome-Host Interaction and Its Role in Metabolic Disease. Nutrients 10 (2018).
Roca-Saavedra, P. et al. Food additives, contaminants and other minor components: effects on human gut microbiota-a review. J. Physiol. Biochem. 74, 69–83 (2018).
pubmed: 28488210 doi: 10.1007/s13105-017-0564-2 pmcid: 28488210
Chassaing, B., Van de Wiele, T., De, B. J., Marzorati, M. & Gewirtz, A. T. Dietary emulsifiers directly alter human microbiota composition and gene expression ex vivo potentiating intestinal inflammation. Gut 66, 1414–1427 (2017).
pubmed: 28325746 pmcid: 5940336 doi: 10.1136/gutjnl-2016-313099
Viennois, E. & Chassaing, B. First victim, later aggressor: How the intestinal microbiota drives the pro-inflammatory effects of dietary emulsifiers? Gut Microbes 1–4, https://doi.org/10.1080/19490976.2017.1421885 (2018).
pmcid: 6219590 doi: 10.1080/19490976.2017.1421885
Swidsinski, A. et al. Bacterial overgrowth and inflammation of small intestine after carboxymethylcellulose ingestion in genetically susceptible mice. Inflamm. Bowel Dis. 15, 359–364 (2009).
pubmed: 18844217 doi: 10.1002/ibd.20763 pmcid: 18844217
Martino, J. V., Van Limbergen, J. & Cahill, L. E. The Role of Carrageenan and Carboxymethylcellulose in the Development of Intestinal Inflammation. Front. Pediatr. 5, 96 (2017).
pubmed: 28507982 pmcid: 5410598 doi: 10.3389/fped.2017.00096
Tang, W. H. W. et al. Intestinal Microbial Metabolism of Phosphatidylcholine and Cardiovascular Risk. N. Engl. J. Med. 368, 1575–1584 (2013).
pubmed: 23614584 pmcid: 3701945 doi: 10.1056/NEJMoa1109400
Roehrs, M. et al. Annatto carotenoids attenuate oxidative stress and inflammatory response after high-calorie meal in healthy subjects. Food Res. Int. 100, 771–779 (2017).
pubmed: 28873749 doi: 10.1016/j.foodres.2017.08.005 pmcid: 28873749
Scientific Opinion on the re-evaluation of ascorbic acid (E 300). sodium ascorbate (E 301) and calcium ascorbate (E 302) as food additives. EFSA J. 13, 4087 (2015).
Miyazaki, T. et al. Sodium alginate prevents progression of non-alcoholic steatohepatitis and liver carcinogenesis in obese and diabetic mice. Oncotarget 7, 10448–10458 (2016).
pubmed: 26871288 pmcid: 4891131 doi: 10.18632/oncotarget.7249
Shimotoyodome, A., Suzuki, J., Kameo, Y. & Hase, T. Dietary supplementation with hydroxypropyl-distarch phosphate from waxy maize starch increases resting energy expenditure by lowering the postprandial glucose-dependent insulinotropic polypeptide response in human subjects. Br. J. Nutr. 106, 96–104 (2011).
pubmed: 21338535 doi: 10.1017/S0007114510005854 pmcid: 21338535
Stewart, M. & Zimmer, J. A High Fiber Cookie Made with Resistant Starch Type 4 Reduces Post-Prandial Glucose and Insulin Responses in Healthy Adults. Nutrients 9, 237 (2017).
pmcid: 5372900 doi: 10.3390/nu9030237
González-Bermúdez, C. A., López-Nicolás, R., Peso-Echarri, P., Frontela-Saseta, C. & Martínez-Graciá, C. Effects of different thickening agents on infant gut microbiota. Food Funct. 9, 1768–1778 (2018).
pubmed: 29508870 doi: 10.1039/C7FO01992K pmcid: 29508870
Hercberg, S. et al. The Nutrinet-Sante Study: a web-based prospective study on the relationship between nutrition and health and determinants of dietary patterns and nutritional status. BMC Public. Health. 10, 242 (2010).
pubmed: 20459807 pmcid: 2881098 doi: 10.1186/1471-2458-10-242

Auteurs

Eloi Chazelas (E)

Sorbonne Paris Nord - Paris 13 University, Inserm U1153, Inrae U1125, Cnam, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center - University of Paris (CRESS), Bobigny, France. e.chazelas@eren.smbh.univ-paris13.fr.

Mélanie Deschasaux (M)

Sorbonne Paris Nord - Paris 13 University, Inserm U1153, Inrae U1125, Cnam, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center - University of Paris (CRESS), Bobigny, France.

Bernard Srour (B)

Sorbonne Paris Nord - Paris 13 University, Inserm U1153, Inrae U1125, Cnam, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center - University of Paris (CRESS), Bobigny, France.

Emmanuelle Kesse-Guyot (E)

Sorbonne Paris Nord - Paris 13 University, Inserm U1153, Inrae U1125, Cnam, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center - University of Paris (CRESS), Bobigny, France.

Chantal Julia (C)

Sorbonne Paris Nord - Paris 13 University, Inserm U1153, Inrae U1125, Cnam, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center - University of Paris (CRESS), Bobigny, France.
Public Health Department, Avicenne Hospital, AP-HP, Bobigny, France.

Benjamin Alles (B)

Sorbonne Paris Nord - Paris 13 University, Inserm U1153, Inrae U1125, Cnam, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center - University of Paris (CRESS), Bobigny, France.

Nathalie Druesne-Pecollo (N)

Sorbonne Paris Nord - Paris 13 University, Inserm U1153, Inrae U1125, Cnam, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center - University of Paris (CRESS), Bobigny, France.

Pilar Galan (P)

Sorbonne Paris Nord - Paris 13 University, Inserm U1153, Inrae U1125, Cnam, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center - University of Paris (CRESS), Bobigny, France.

Serge Hercberg (S)

Sorbonne Paris Nord - Paris 13 University, Inserm U1153, Inrae U1125, Cnam, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center - University of Paris (CRESS), Bobigny, France.
Public Health Department, Avicenne Hospital, AP-HP, Bobigny, France.

Paule Latino-Martel (P)

Sorbonne Paris Nord - Paris 13 University, Inserm U1153, Inrae U1125, Cnam, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center - University of Paris (CRESS), Bobigny, France.

Younes Esseddik (Y)

Sorbonne Paris Nord - Paris 13 University, Inserm U1153, Inrae U1125, Cnam, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center - University of Paris (CRESS), Bobigny, France.

Fabien Szabo (F)

Sorbonne Paris Nord - Paris 13 University, Inserm U1153, Inrae U1125, Cnam, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center - University of Paris (CRESS), Bobigny, France.

Pierre Slamich (P)

Open Food Facts, Saint-Maur-des-Fossés, France.

Stephane Gigandet (S)

Open Food Facts, Saint-Maur-des-Fossés, France.

Mathilde Touvier (M)

Sorbonne Paris Nord - Paris 13 University, Inserm U1153, Inrae U1125, Cnam, Nutritional Epidemiology Research Team (EREN), Epidemiology and Statistics Research Center - University of Paris (CRESS), Bobigny, France.

Articles similaires

Humans Male Female Health Knowledge, Attitudes, Practice Middle Aged
Humans Peripheral Arterial Disease Retrospective Studies Male Female
Humans Male Female Intensive Care Units COVID-19
Humans Recurrence Male Female Middle Aged

Classifications MeSH