Predicting urinary stone recurrence: a joint model analysis of repeated 24-hour urine collections from the MSTONE database.
24-hour urine parameters
Joint recurrent model
Mixture cure model
Urinary stone recurrence
Journal
Urolithiasis
ISSN: 2194-7236
Titre abrégé: Urolithiasis
Pays: Germany
ID NLM: 101602699
Informations de publication
Date de publication:
01 Nov 2024
01 Nov 2024
Historique:
received:
02
10
2024
accepted:
18
10
2024
medline:
1
11
2024
pubmed:
1
11
2024
entrez:
1
11
2024
Statut:
epublish
Résumé
To address the limitations in existing urinary stone recurrence (USR) models, including failure to account for changes in 24-hour urine (24U) parameters over time and ignoring multiplicity of stone recurrences, we presented a novel statistical method to jointly model temporal trends in 24U parameters and multiple recurrent stone events. The MSTONE database spanning May 2001 to April 2015 was analyzed. A joint recurrent model was employed, combining a linear mixed-effects model for longitudinal 24U parameters and a recurrent event model with a dynamic first-order Autoregressive (AR(1)) structure. A mixture cure component was included to handle patient heterogeneity. Comparisons were made with existing methods, multivariable Cox regression and conditional Prentice-Williams-Peterson regression, both applied to established nomograms. Among 396 patients (median follow-up of 2.93 years; IQR, 1.53-4.36 years), 34.6% remained free of stone recurrence throughout the study period, 30.0% experienced a single recurrence, and 35.4% had multiple recurrences. The joint recurrent model with a mixture cure component identified significant associations between 24U parameters - including urine pH (adjusted HR = 1.991; 95% CI 1.490-2.660; p < 0.001), total volume (adjusted HR = 0.700; 95% CI 0.501-0.977; p = 0.036), potassium (adjusted HR = 0.983; 95% CI 0.974-0.991; p < 0.001), uric acid (adjusted HR = 1.528; 95% CI 1.105-2.113, p = 0.010), calcium (adjusted HR = 1.164; 95% CI 1.052-1.289; p = 0.003), and citrate (adjusted HR = 0.796; 95% CI 0.706-0.897; p < 0.001), and USR, achieving better predictive performance compared to existing methods. 24U parameters play an important role in prevention of USR, and therefore, patients with a history of stones are recommended to closely monitor for future recurrence by regularly conducting 24U tests.
Identifiants
pubmed: 39485566
doi: 10.1007/s00240-024-01653-5
pii: 10.1007/s00240-024-01653-5
doi:
Substances chimiques
Uric Acid
268B43MJ25
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
156Subventions
Organisme : NIDDK NIH HHS
ID : R01DK128237
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01DK128237
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01DK128237
Pays : United States
Informations de copyright
© 2024. The Author(s).
Références
Hill AJ, Basourakos SP, Lewicki P, Wu X, Arenas-Gallo C, Chuang D et al (2022) Incidence of kidney stones in the United States: the continuous national health and nutrition examination survey. J Urol 207(4):851–856
doi: 10.1097/JU.0000000000002331
pubmed: 34854755
Pearle MS, Calhoun EA, Curhan GC, Project UDA (2005) Urologic diseases in America project: urolithiasis. J Urol 173(3):848–857
doi: 10.1097/01.ju.0000152082.14384.d7
pubmed: 15711292
Stamatelou KK, Francis ME, Jones CA, Nyberg LM Jr, Curhan GC (2003) Time trends in reported prevalence of kidney stones in the United States: 1976–1994. Kidney Int 63(5):1817–1823
doi: 10.1046/j.1523-1755.2003.00917.x
pubmed: 12675858
Scales CD Jr, Smith AC, Hanley JM, Saigal CS, Project UDA (2012) Prevalence of kidney stones in the United States. Eur Urol 62(1):160–165
doi: 10.1016/j.eururo.2012.03.052
pubmed: 22498635
pmcid: 3362665
Abufaraj M, Xu T, Cao C, Waldhoer T, Seitz C, D’andrea D et al (2021) Prevalence and trends in kidney stone among adults in the USA: analyses of national health and nutrition examination survey 2007–2018 data. Eur Urol Focus 7(6):1468–1475
doi: 10.1016/j.euf.2020.08.011
pubmed: 32900675
Moe OW (2006) Kidney stones: pathophysiology and medical management. Lancet 367(9507):333–344
doi: 10.1016/S0140-6736(06)68071-9
pubmed: 16443041
Maalouf NM (2012) Approach to the adult kidney stone former. Clin Rev Bone Miner Metab 10:38–49
doi: 10.1007/s12018-011-9111-9
pubmed: 22654574
pmcid: 3361075
Alelign T, Petros B (2018) Kidney stone disease: an update on current concepts. Advances in urology 2018
Stephen W, Leslie HS, Khalid B (2023) 24-Hour Urine Testing for Nephrolithiasis: Interpretation and Treatment Guidelines. StatPearls
Milose JC, Kaufman SR, Hollenbeck BK, Wolf JS, Hollingsworth JM (2014) Prevalence of 24-hour urine collection in high risk stone formers. J Urol 191(2):376–380
doi: 10.1016/j.juro.2013.08.080
pubmed: 24018242
Rule AD, Lieske JC, Li X, Melton LJ III, Krambeck AE, Bergstralh EJ (2014) The ROKS nomogram for predicting a second symptomatic stone episode. J Am Soc Nephrol 25(12):2878–2886
doi: 10.1681/ASN.2013091011
pubmed: 25104803
pmcid: 4243346
Vaughan LE, Enders FT, Lieske JC, Pais VM, Rivera ME, Mehta RA et al (2019) Predictors of symptomatic kidney stone recurrence after the first and subsequent episodes. Mayo Clinic Proceedings: Elsevier; pp. 202 – 10
Prentice RL, Williams BJ, Peterson AV (1981) On the regression analysis of multivariate failure time data. Biometrika 68(2):373–379
doi: 10.1093/biomet/68.2.373
Eisner BH, Goldfarb DS (2014) A nomogram for the prediction of kidney stone recurrence. J Am Soc Nephrology: JASN 25(12):2685
doi: 10.1681/ASN.2014060631
pmcid: 4243365
Johnson BA, Best SL, Nakada SY, Tracy C, Steinberg RL, Thomas L et al (2020) Initial results from the M-STONE group: a multi-center collaboration to study treatment outcomes in nephrolithiasis evaluation. J Endourol 34(9):919–923
doi: 10.1089/end.2020.0108
pubmed: 32660266
Kutner MH, Nachtsheim CJ, Neter J, Li W (2005) Applied linear statistical models. McGraw-hill
R Core Team (2022) R: a Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Vienna, Austria
Amorim LD, Cai J (2015) Modelling recurrent events: a tutorial for analysis in epidemiology. Int J Epidemiol 44(1):324–333
doi: 10.1093/ije/dyu222
pubmed: 25501468
Tsiatis AA, Degruttola V, Wulfsohn MS (1995) Modeling the relationship of survival to longitudinal data measured with error. Applications to survival and CD4 counts in patients with AIDS. J Am Stat Assoc 90(429):27–37
doi: 10.1080/01621459.1995.10476485
Tawiah R, McLachlan GJ, Ng SK (2020) Mixture cure models with time-varying and multilevel frailties for recurrent event data. Stat Methods Med Res 29(5):1368–1385
doi: 10.1177/0962280219859377
pubmed: 31293217
Berkson J, Gage RP (1952) Survival curve for cancer patients following treatment. J Am Stat Assoc 47(259):501–515
doi: 10.1080/01621459.1952.10501187
Boag JW (1949) Maximum likelihood estimates of the proportion of patients cured by cancer therapy. J Royal Stat Soc Ser B (Methodological) 11(1):15–53
doi: 10.1111/j.2517-6161.1949.tb00020.x
Blanche P, Dartigues JF, Jacqmin-Gadda H (2013) Estimating and comparing time‐dependent areas under receiver operating characteristic curves for censored event times with competing risks. Stat Med 32(30):5381–5397
doi: 10.1002/sim.5958
pubmed: 24027076
Wang J, Jiang X, Ning J (2023) Evaluating dynamic and predictive discrimination for recurrent event models: use of a time-dependent C-index. Biostatistics:kxad031
Van Buuren S, Groothuis-Oudshoorn K (2011) Mice: Multivariate imputation by chained equations in R. J Stat Softw 45:1–67
doi: 10.18637/jss.v045.i03
Rubin DB (2018) Multiple imputation. Flexible imputation of missing data, Second edition. Chapman and Hall/CRC; pp. 29–62
Kim Y-J, Kim T-H, Yun S-J, Kim ME, Kim W-J, Lee S-C (2009) Renal phosphate control as a reliable predictive factor of stone recurrence. J Urol 181(6):2566–2572
doi: 10.1016/j.juro.2009.01.101
pubmed: 19375105
Ha Y-S, Tchey D-U, Kang HW, Kim Y-J, Yun S-J, Lee S-C et al (2010) Phosphaturia as a promising predictor of recurrent stone formation in patients with urolithiasis. Korean J Urol 51(1):54–59
doi: 10.4111/kju.2010.51.1.54
pubmed: 20414412
pmcid: 2855459
Kang HW, Seo SP, Ha Y-S, Kim WT, Kim Y-J, Yun S-J et al (2019) Twenty-four-hour urine osmolality as a representative index of adequate hydration and a predictor of recurrence in patients with urolithiasis. Int Urol Nephrol 51:1129–1135
doi: 10.1007/s11255-019-02108-2
pubmed: 31089946
D’costa MR, Haley WE, Mara KC, Enders FT, Vrtiska TJ, Pais VM et al (2019) Symptomatic and radiographic manifestations of kidney stone recurrence and their prediction by risk factors: a prospective cohort study. J Am Soc Nephrol 30(7):1251–1260
doi: 10.1681/ASN.2018121241
pubmed: 31175141
pmcid: 6622409
Wang K, Ge J, Han W, Wang D, Zhao Y, Shen Y et al (2022) Risk factors for kidney stone disease recurrence: a comprehensive meta-analysis. BMC Urol 22(1):62
doi: 10.1186/s12894-022-01017-4
pubmed: 35439979
pmcid: 9017041
Kang HW, Seo SP, Kwon W-A, Woo SH, Kim WT, Kim Y-J et al (2014) Distinct metabolic characteristics and risk of stone recurrence in patients with multiple stones at the first-time presentation. Urology 84(2):274–278
doi: 10.1016/j.urology.2014.02.029
pubmed: 24768010
Hsi RS, Sanford T, Goldfarb DS, Stoller ML (2017) The role of the 24-hour urine collection in the prevention of kidney stone recurrence. J Urol 197(4):1084–1089
doi: 10.1016/j.juro.2016.10.052
pubmed: 27746283