Immunotherapeutic potential of CD4 and CD8 single-positive T cells in thymic epithelial tumors.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
04 03 2020
04 03 2020
Historique:
received:
01
07
2019
accepted:
18
02
2020
entrez:
6
3
2020
pubmed:
7
3
2020
medline:
13
11
2020
Statut:
epublish
Résumé
Indications for current immune checkpoint inhibitors are expanding and now include thymic epithelial tumors (TETs). Although clinical trials on immune checkpoint inhibitors for TETs are ongoing, a rationale has not yet been established for immunotherapy for TETs. Therefore, we herein performed phenotypic and functional analyses of T cells in surgically resected TET tissues with a focus on the anti-tumor properties of T cells to TETs as a step towards establishing a rationale for immunotherapy for TETs. We examined T-cell profiles in surgically resected TET tissues, particularly CD4 and CD8 single-positive T cells, using flow cytometry. In the functional analysis of T cells in TETs, we investigated not only cytokine production by T cells, but also their cytotoxicity using bispecific T-cell engager technology. The cluster analysis of T-cell profiles based on flow cytometric data revealed that type B3 thymoma and thymic carcinoma (B3/C) belonged to the hot cluster characterized by a high proportion of Tim-3+ and CD103+ in CD4 and CD8 single-positive T cells. Enhancements in cytokine production and the cytotoxicity of T cells by the anti-PD-1 antibody were significantly greater in B3/C. These results indicate the potential of immunotherapy for patients with B3/C.
Identifiants
pubmed: 32132638
doi: 10.1038/s41598-020-61053-8
pii: 10.1038/s41598-020-61053-8
pmc: PMC7055333
doi:
Types de publication
Clinical Trial
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
4064Références
Marx, A. et al. The 2015 World Health Organization Classification of Tumors of the Thymus: Continuity and Changes. J. Thorac. Oncol. 10, 1383–1395, https://doi.org/10.1097/JTO.0000000000000654 (2015).
doi: 10.1097/JTO.0000000000000654
pubmed: 4581965
pmcid: 4581965
Travis, W. D. et al. The 2015 World Health Organization Classification of Lung Tumors: Impact of Genetic, Clinical and Radiologic Advances Since the 2004 Classification. J. Thorac. Oncol. 10, 1243–1260, https://doi.org/10.1097/JTO.0000000000000630 (2015).
doi: 10.1097/JTO.0000000000000630
pubmed: 26291008
pmcid: 26291008
Okumura, M. et al. Clinical and functional significance of WHO classification on human thymic epithelial neoplasms: a study of 146 consecutive tumors. Am. J. Surg. Pathol. 25, 103–110 (2001).
doi: 10.1097/00000478-200101000-00012
Kondo, K. & Monden, Y. Therapy for thymic epithelial tumors: a clinical study of 1,320 patients from Japan. Ann. Thorac. Surg. 76, 878–884, https://doi.org/10.1016/s0003-4975(03)00555-1 (2003). discussion 884-875.
doi: 10.1016/s0003-4975(03)00555-1
Hishida, T. et al. Long-term outcome and prognostic factors of surgically treated thymic carcinoma: results of 306 cases from a Japanese Nationwide Database Study. Eur. J. Cardiothorac. Surg. 49, 835–841, https://doi.org/10.1093/ejcts/ezv239 (2016).
doi: 10.1093/ejcts/ezv239
Wright, C. D. et al. Predictors of recurrence in thymic tumors: importance of invasion, World Health Organization histology, and size. J. Thorac. Cardiovasc. Surg. 130, 1413–1421, https://doi.org/10.1016/j.jtcvs.2005.07.026 (2005).
doi: 10.1016/j.jtcvs.2005.07.026
Bott, M. J. et al. Management and outcomes of relapse after treatment for thymoma and thymic carcinoma. Ann Thorac Surg 92, 1984–1991; discussion 1991–1982, https://doi.org/10.1016/j.athoracsur.2011.07.078 (2011).
Merveilleux du Vignaux, C., Maury, J. M. & Girard, N. Novel Agents in the Treatment of Thymic Malignancies. Curr. Treat. Options Oncol. 18, 52, https://doi.org/10.1007/s11864-017-0495-8 (2017).
doi: 10.1007/s11864-017-0495-8
Topalian, S. L., Drake, C. G. & Pardoll, D. M. Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell 27, 450–461, https://doi.org/10.1016/j.ccell.2015.03.001 (2015).
doi: 10.1016/j.ccell.2015.03.001
pubmed: 25858804
pmcid: 25858804
Cho, J. et al. Pembrolizumab for Patients With Refractory or Relapsed Thymic Epithelial Tumor: An Open-Label Phase II Trial. J Clin Oncol, JCO2017773184, https://doi.org/10.1200/JCO.2017.77.3184 (2018).
Giaccone, G. et al. Pembrolizumab in patients with thymic carcinoma: a single-arm, single-centre, phase 2 study. Lancet Oncol. 19, 347–355, https://doi.org/10.1016/S1470-2045(18)30062-7 (2018).
doi: 10.1016/S1470-2045(18)30062-7
Weksler, B. & Lu, B. Alterations of the immune system in thymic malignancies. J. Thorac. Oncol. 9, S137–142, https://doi.org/10.1097/JTO.0000000000000299 (2014).
doi: 10.1097/JTO.0000000000000299
Owen, D. et al. Expression Patterns, Prognostic Value, and Intratumoral Heterogeneity of PD-L1 and PD-1 in Thymoma and Thymic Carcinoma. J. Thorac. Oncol. 13, 1204–1212, https://doi.org/10.1016/j.jtho.2018.04.013 (2018).
doi: 10.1016/j.jtho.2018.04.013
Arbour, K. C. et al. Expression of PD-L1 and other immunotherapeutic targets in thymic epithelial tumors. PLoS One 12, e0182665, https://doi.org/10.1371/journal.pone.0182665 (2017).
doi: 10.1371/journal.pone.0182665
pubmed: 5542609
pmcid: 5542609
Weissferdt, A. et al. Expression of PD-1 and PD-L1 in thymic epithelial neoplasms. Mod. Pathol. 30, 826–833, https://doi.org/10.1038/modpathol.2017.6 (2017).
doi: 10.1038/modpathol.2017.6
pubmed: 28281549
pmcid: 28281549
Funaki, S. et al. The prognostic impact of programmed cell death 1 and its ligand and the correlation with epithelial-mesenchymal transition in thymic carcinoma. Cancer Med. 8, 216–226, https://doi.org/10.1002/cam4.1943 (2019).
doi: 10.1002/cam4.1943
pubmed: 30600651
pmcid: 30600651
Okumura, M. et al. Three-color flow cytometric study on lymphocytes derived from thymic diseases. J. Surg. Res. 101, 130–137, https://doi.org/10.1006/jsre.2001.6282 (2001).
doi: 10.1006/jsre.2001.6282
Lizotte, P. H. et al. Multiparametric profiling of non-small-cell lung cancers reveals distinct immunophenotypes. JCI Insight 1, e89014, https://doi.org/10.1172/jci.insight.89014 (2016).
doi: 10.1172/jci.insight.89014
pubmed: 27699239
pmcid: 27699239
Simoni, Y. et al. Bystander CD8(+) T cells are abundant and phenotypically distinct in human tumour infiltrates. Nat. 557, 575–579, https://doi.org/10.1038/s41586-018-0130-2 (2018).
doi: 10.1038/s41586-018-0130-2
Lee, H. S. et al. Genomic Analysis of Thymic Epithelial Tumors Identifies Novel Subtypes Associated with Distinct Clinical Features. Clin. Cancer Res. 23, 4855–4864, https://doi.org/10.1158/1078-0432.CCR-17-0066 (2017).
doi: 10.1158/1078-0432.CCR-17-0066
pubmed: 5559309
pmcid: 5559309
Radovich, M. et al. The Integrated Genomic Landscape of Thymic Epithelial Tumors. Cancer Cell 33, 244–258 e210, https://doi.org/10.1016/j.ccell.2018.01.003 (2018).
doi: 10.1016/j.ccell.2018.01.003
pubmed: 5994906
pmcid: 5994906
Petrini, I. et al. A specific missense mutation in GTF2I occurs at high frequency in thymic epithelial tumors. Nat. Genet. 46, 844–849, https://doi.org/10.1038/ng.3016 (2014).
doi: 10.1038/ng.3016
pubmed: 5705185
pmcid: 5705185
Baeuerle, P. A. & Reinhardt, C. Bispecific T-cell engaging antibodies for cancer therapy. Cancer Res. 69, 4941–4944, https://doi.org/10.1158/0008-5472.CAN-09-0547 (2009).
doi: 10.1158/0008-5472.CAN-09-0547
Schreiner, J. et al. Expression of inhibitory receptors on intratumoral T cells modulates the activity of a T cell-bispecific antibody targeting folate receptor. Oncoimmunology 5, e1062969, https://doi.org/10.1080/2162402X.2015.1062969 (2016).
doi: 10.1080/2162402X.2015.1062969
Iwahori, K. et al. Peripheral T cell cytotoxicity predicts T cell function in the tumor microenvironment. Sci. Rep. 9, 2636, https://doi.org/10.1038/s41598-019-39345-5 (2019).
doi: 10.1038/s41598-019-39345-5
pubmed: 6385254
pmcid: 6385254
Iwahori, K. et al. Engager T cells: a new class of antigen-specific T cells that redirect bystander T cells. Mol. Ther. 23, 171–178, https://doi.org/10.1038/mt.2014.156 (2015).
doi: 10.1038/mt.2014.156