Asynchronous carbon sink saturation in African and Amazonian tropical forests.
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
03 2020
03 2020
Historique:
received:
09
06
2019
accepted:
19
12
2019
entrez:
6
3
2020
pubmed:
7
3
2020
medline:
14
4
2020
Statut:
ppublish
Résumé
Structurally intact tropical forests sequestered about half of the global terrestrial carbon uptake over the 1990s and early 2000s, removing about 15 per cent of anthropogenic carbon dioxide emissions
Identifiants
pubmed: 32132693
doi: 10.1038/s41586-020-2035-0
pii: 10.1038/s41586-020-2035-0
doi:
Substances chimiques
Carbon Dioxide
142M471B3J
Types de publication
Historical Article
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
80-87Subventions
Organisme : European Research Council
Pays : International
Commentaires et corrections
Type : CommentIn
Type : CommentIn
Références
Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).
Sitch, S. et al. Recent trends and drivers of regional sources and sinks of carbon dioxide. Biogeosciences 12, 653–679 (2015).
Gaubert, B. et al. Global atmospheric CO
pubmed: 6839691
pmcid: 6839691
Huntingford, C. et al. Simulated resilience of tropical rainforests to CO
Mercado, L. M. et al. Large sensitivity in land carbon storage due to geographical and temporal variation in the thermal response of photosynthetic capacity. New Phytol. 218, 1462–1477 (2018).
pubmed: 5969232
pmcid: 5969232
Brienen, R. J. W. et al. Long-term decline of the Amazon carbon sink. Nature 519, 344–348 (2015).
Piao, S. et al. Evaluation of terrestrial carbon cycle models for their response to climate variability and to CO
Schimel, D., Stephens, B. B. & Fisher, J. B. Effect of increasing CO
Anderegg, W. R. L. et al. Tropical nighttime warming as a dominant driver of variability in the terrestrial carbon sink. Proc. Natl Acad. Sci. USA 112, 15591–15596 (2015).
Ciais, P. et al. Five decades of northern land carbon uptake revealed by the interhemispheric CO
Lewis, S. L., Edwards, D. P. & Galbraith, D. Increasing human dominance of tropical forests. Science 349, 827–832 (2015).
Pugh, T. A. M. et al. Role of forest regrowth in global carbon sink dynamics. Proc. Natl Acad. Sci. USA 116, 4382–4387 (2019).
Lewis, S. L. et al. Increasing carbon storage in intact African tropical forests. Nature 457, 1003–1006 (2009).
Phillips, O. L. et al. Drought sensitivity of the Amazon rainforest. Science 323, 1344–1347 (2009).
Qie, L. et al. Long-term carbon sink in Borneo’s forests halted by drought and vulnerable to edge effects. Nat. Commun. 8, 1966 (2017).
pubmed: 5736600
pmcid: 5736600
Gatti, L. V. et al. Drought sensitivity of Amazonian carbon balance revealed by atmospheric measurements. Nature 506, 76–80 (2014).
Nemani, R. R. et al. Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300, 1560–1563 (2003).
Keenan, T. F. et al. Recent pause in the growth rate of atmospheric CO
pubmed: 5105171
pmcid: 5105171
Booth, B. B. B. et al. High sensitivity of future global warming to land carbon cycle processes. Environ. Res. Lett. 7, 024002 (2012).
Lombardozzi, D. L., Bonan, G. B., Smith, N. G., Dukes, J. S. & Fisher, R. A. Temperature acclimation of photosynthesis and respiration: a key uncertainty in the carbon cycle-climate feedback. Geophys. Res. Lett. 42, 8624–8631 (2015).
Le Quéré, C. et al. Global carbon budget 2018. Earth Syst. Sci. Data 10, 2141–2194 (2018).
Lewis, S. L., Brando, P. M., Phillips, O. L., van der Heijden, G. M. F. & Nepstad, D. The 2010 Amazon drought. Science 331, 554 (2011).
Feldpausch, T. R. et al. Amazon forest response to repeated droughts. Glob. Biogeochem. Cycles 30, 964–982 (2016).
McDowell, N. et al. Drivers and mechanisms of tree mortality in moist tropical forests. New Phytol. 219, 851–869 (2018).
Aleixo, I. et al. Amazonian rainforest tree mortality driven by climate and functional traits. Nat. Clim. Chang. 9, 384–388 (2019).
Lewis, S. L. et al. Concerted changes in tropical forest structure and dynamics: evidence from 50 South American long-term plots. Phil. Trans. R. Soc. Lond. B 359, 421–436 (2004).
Lewis, S. L. et al. Above-ground biomass and structure of 260 African tropical forests. Phil. Trans. R. Soc. Lond. B 368, 20120295 (2013).
Quesada, C. A. et al. Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate. Biogeosciences 9, 2203–2246 (2012).
Malhi, Y. et al. The above-ground coarse wood productivity of 104 neotropical forest plots. Glob. Change Biol. 10, 563–591 (2004).
Galbraith, D. et al. Residence times of woody biomass in tropical forests. Plant Ecol. Divers. 6, 139–157 (2013).
Reich, P. B. et al. Boreal and temperate trees show strong acclimation of respiration to warming. Nature 531, 633–636 (2016).
ter Steege, H. et al. Continental-scale patterns of canopy tree composition and function across Amazonia. Nature 443, 444–447 (2006).
Bauters, M. et al. High fire-derived nitrogen deposition on central African forests. Proc. Natl Acad. Sci. USA 115, 549–554 (2018).
Parmentier, I. et al. The odd man out? Might climate explain the lower tree alpha-diversity of African rain forests relative to Amazonian rain forests? J. Ecol. 95, 1058–1071 (2007).
Slik, J. W. F. et al. Phylogenetic classification of the world’s tropical forests. Proc. Natl Acad. Sci. USA 115, 1837–1842 (2018).
Phillips, O. L. et al. Increasing dominance of large lianas in Amazonian forests. Nature 418, 770–774 (2002).
Schnitzer, S. A. & Bongers, F. Increasing liana abundance and biomass in tropical forests: emerging patterns and putative mechanisms. Ecol. Lett. 14, 397–406 (2011).
pubmed: 21314879
pmcid: 21314879
Meinshausen, M. et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim. Change 109, 213–241 (2011).
Terrer, C. et al. Nitrogen and phosphorus constrain the CO
Fleischer, K. et al. Amazon forest response to CO
Jiang, Y. et al. Widespread increase of boreal summer dry season length over the Congo rainforest. Nat. Clim. Chang. 9, 617–622 (2019).
Gloor, M. et al. Recent Amazon climate as background for possible ongoing and future changes of Amazon humid forests. Glob. Biogeochem. Cycles 29, 1384–1399 (2015).
Kolby Smith, W. et al. Large divergence of satellite and Earth system model estimates of global terrestrial CO
Chen, C. et al. China and India lead in greening of the world through land-use management. Nature Sustain. 2, 122–129 (2019).
Chambers, J. Q., Higuchi, N., Schimel, J. P., Ferreira, L. V. & Melack, J. M. Decomposition and carbon cycling of dead trees in tropical forests of the central Amazon. Oecologia 122, 380–388 (2000).
Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).
pubmed: 24233722
Pearson, T. R. H., Brown, S., Murray, L. & Sidman, G. Greenhouse gas emissions from tropical forest degradation: an underestimated source. Carbon Balance Manag. 12, 3 (2017).
pubmed: 5309188
pmcid: 5309188
Schwartz, N. B., Uriarte, M., DeFries, R., Gutierrez-Velez, V. H. & Pinedo-Vasquez, M. A. Land-use dynamics influence estimates of carbon sequestration potential in tropical second-growth forest. Environ. Res. Lett. 12, 074023 (2017).
Lewis, S. L., Wheeler, C. E., Mitchard, E. T. A. & Koch, A. Regenerate natural forests to store carbon. Nature 568, 25–28 (2019).
Yu, K. et al. Pervasive decreases in living vegetation carbon turnover time across forest climate zones. Proc. Natl Acad. Sci. USA 116, 24662–24667 (2019).
Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).
Lopez-Gonzalez, G., Lewis, S. L., Burkitt, M. & Phillips, O. L. ForestPlots.net: a web application and research tool to manage and analyse tropical forest plot data. J. Veg. Sci. 22, 610–613 (2011).
Lopez-Gonzalez, G., Lewis, S. L., Burkitt, M., Baker, T. R. & Phillips, O. L. ForestPlots.net Database http://www.forestplots.net (2009).
Sheil, D. & Bitariho, R. Bwindi Impenetrable Forest TEAM Site https://www.wildlifeinsights.org/team-network , TEAM-DataPackage-20151201235855_1254 (2009).
Kenfack, D. Korup National Park TEAM Site https://www.wildlifeinsights.org/team-network , TEAM-DataPackage-20151201235855_1254 (2011).
Rovero, F., Marshall, A. & Martin, E. Udzungwa TEAM Site https://www.wildlifeinsights.org/team-network , TEAM-DataPackage-20151130235007_5069 (2009).
Hockemba, M. B. N. Nouabalé Ndoki TEAM Site https://www.wildlifeinsights.org/team-network , TEAM-DataPackage-20151201235855_1254 (2010).
Anderson-Teixeira, K. J. et al. CTFS-ForestGEO: a worldwide network monitoring forests in an era of global change. Glob. Change Biol. 21, 528–549 (2015).
Gourlet-Fleury, S. et al. Tropical forest recovery from logging: a 24 year silvicultural experiment from Central Africa. Phil. Trans. R. Soc. Lond. B 368, 20120302 (2013).
Claeys, F. et al. Climate change would lead to a sharp acceleration of Central African forests dynamics by the end of the century. Environ. Res. Lett. 14, 044002 (2019).
Chave, J. et al. Improved allometric models to estimate the aboveground biomass of tropical trees. Glob. Change Biol. 20, 3177–3190 (2014).
R Development Core Team R: A Language and Environment for Statistical Computing http://www.R-project.org/ (2015).
Lopez-Gonzalez, G., Sullivan, M. & Baker, T. BiomasaFP. R package version 0.2.1 http://www.forestplots.net/en/resources/analysis (2017).
Phillips, O., Baker, T., Brienen, R. & Feldpausch, T. RAINFOR field manual for plot establishment and remeasurement. http://www.rainfor.org/upload/ManualsEnglish/RAINFOR_field_manual_version_2016.pdf (Univ. Leeds, 2016).
Talbot, J. et al. Methods to estimate aboveground wood productivity from long-term forest inventory plots. For. Ecol. Manage. 320, 30–38 (2014).
Sullivan, M. J. P. et al. Field methods for sampling tree height for tropical forest biomass estimation. Methods Ecol. Evol. 9, 1179–1189 (2018).
pubmed: 5993227
pmcid: 5993227
Feldpausch, T. R. et al. Tree height integrated into pantropical forest biomass estimates. Biogeosciences 9, 3381–3403 (2012).
Chave, J. et al. Towards a worldwide wood economics spectrum. Ecol. Lett. 12, 351–366 (2009).
Zanne, A. E. et al. Towards a Worldwide Wood Economics Spectrum https://doi.org/10.5061/dryad.234 (Dryad Digital Repository, 2009).
Martin, A. R., Doraisami, M. & Thomas, S. C. Global patterns in wood carbon concentration across the world’s trees and forests. Nat. Geosci. 11, 915–920 (2018).
Kohyama, T. S., Kohyama, T. I., Sheil, D. & Rees, M. Definition and estimation of vital rates from repeated censuses: choices, comparisons and bias corrections focusing on trees. Methods Ecol. Evol. 9, 809–821 (2018).
Bates, D., Maechler, M., Bolker, B. & Walker, S. lme4: linear mixed-effects models using Eigen and S4. R package version 1.0-4 http://www.inside-r.org/packages/lme4/versions/1-0-4 (2013).
Fox, J. Applied Regression Analysis and Generalized Linear Models 2nd edn (Sage Publishing, 2008).
Chave, J. et al. Assessing evidence for a pervasive alteration in tropical tree communities. PLoS Biol. 6, 0455–0462 (2008).
Yuen, J. Q., Ziegler, A. D., Webb, E. L. & Ryan, C. M. Uncertainty in below-ground carbon biomass for major land covers in Southeast Asia. For. Ecol. Manage. 310, 915–926 (2013).
Aragão, L. E. O. C. et al. Spatial patterns and fire response of recent Amazonian droughts. Geophys. Res. Lett. 34, L07701 (2007).
Aragão, L. E. O. C. et al. Environmental change and the carbon balance of Amazonian forests. Biol. Rev. Camb. Phil. Soc. 89, 913–931 (2014).
Tans, P. & Keeling, R. Trends in Atmospheric Carbon Dioxide for Mauna Loa, Hawaii http://www.esrl.noaa.gov/gmd/ccgg/trends/ (ESRL, 2016).
Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations – the CRU TS3.10 Dataset. Int. J. Climatol. 34, 623–642 (2014).
Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
Ramirez-Villegas, J. & Jarvis, A. Downscaling Global Circulation Model Outputs: The Delta Method. Decision and Policy Analysis Working Paper No. 1 https://cgspace.cgiar.org/handle/10568/90731 (International Center for Tropical Agriculture (CIAT), 2010).
Schneider, U. et al. GPCC Full Data Reanalysis Version 6.0 at 0.5°: Monthly Land-Surface Precipitation from Rain-Gauges built on GTS-based and Historic Data https://opendata.dwd.de/climate_environment/GPCC/html/fulldata_v6_doi_download.html (Global Precipitation Climatology Centre (GPCC) at Deutscher Wetterdienst, 2011).
Sun, Q. et al. Review of global precipitation data sets: data sources, estimation, and intercomparisons. Rev. Geophys. 56, 79–107 (2017).
Huffman, G. J. et al. The TRMM Multisatellite Precipitation Analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeorol. 8, 38–55 (2007).
Kume, T. et al. Ten-year evapotranspiration estimates in a Bornean tropical rainforest. Agric. For. Meteorol. 151, 1183–1192 (2011).
Zelazowski, P., Malhi, Y., Huntingford, C., Sitch, S. & Fisher, J. B. Changes in the potential distribution of humid tropical forests on a warmer planet. Phil. Trans. R. Soc. A 369, 137–160 (2011).
James, R., Washington, R. & Rowell, D. P. Implications of global warming for the climate of African rainforests. Phil. Trans. R. Soc. Lond. B 368, 20120298 (2013).
Jung, M. et al. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 467, 951–954 (2010).
Jung, M. et al. Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. J. Geophys. Res. 116, https://doi.org/10.1029/2010JG001566 (2011).
Lloyd, J. & Farquhar, G. D. The CO
Aspinwall, M. J. et al. Convergent acclimation of leaf photosynthesis and respiration to prevailing ambient temperatures under current and warmer climates in Eucalyptus tereticornis. New Phytol. 212, 354–367 (2016).
Bonal, D., Burban, B., Stahl, C., Wagner, F. & Hérault, B. The response of tropical rainforests to drought—lessons from recent research and future prospects. Ann. For. Sci. 73, 27–44 (2016).
Quesada, C. A. et al. Variations in chemical and physical properties of Amazon forest soils in relation to their genesis. Biogeosciences 7, 1515–1541 (2010).
Baker, T. R., Swaine, M. D. & Burslem, D. F. R. P. Variation in tropical forest growth rates: combined effects of functional group composition and resource availability. Perspect. Plant Ecol. Evol. Syst. 6, 21–36 (2003).
Pinheiro, J. C. & Bates, D. M. Mixed-Effects Models in S and S-PLUS 1st edn 528 (Springer, 2000).
Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S 4th edn 498 (Springer, 2002).
Olejnik, S., Mills, J. & Keselman, H. Using Wherry’s adjusted R
Whittingham, M. J., Stephens, P. A., Bradbury, R. B. & Freckleton, R. P. Why do we still use stepwise modelling in ecology and behaviour? J. Anim. Ecol. 75, 1182–1189 (2006).
Bartoń, K. MuMIn: Multi-Model Inference. Tools for performing model selection and model averaging. R package version 1.43.6 (2019).
Gelman, A. & Hill, J. Data Analysis Using Regression and Multilevel/Hierarchical Models (Cambridge Univ. Press, 2007).
Mayaux, P., De Grandi, G. & Malingreau, J.-P. Central African forest cover revisited: a multisatellite analysis. Remote Sens. Environ. 71, 183–196 (2000).
Mayaux, P. et al. The Land Cover Map for Africa in the Year 2000 GLC2000 database, https://forobs.jrc.ec.europa.eu/products/glc2000/products.php (European Commission Joint Research Centre, 2003).