Use of Infrared Thermography to Estimate Brown Fat Activation After a Cooling Protocol in Patients with Severe Obesity That Underwent Bariatric Surgery.


Journal

Obesity surgery
ISSN: 1708-0428
Titre abrégé: Obes Surg
Pays: United States
ID NLM: 9106714

Informations de publication

Date de publication:
06 2020
Historique:
pubmed: 7 3 2020
medline: 15 4 2021
entrez: 6 3 2020
Statut: ppublish

Résumé

In contrast to the energy-storing role of white adipose tissue (WAT), brown adipose tissue (BAT) acts as the main site of non-shivering thermogenesis in mammals and has been reported to play a role in protection against obesity and associated metabolic alterations in rodents. Infrared thermography (IRT) has been proposed as a novel non-invasive, safe, and quick method to estimate BAT thermogenic activation in humans. The aim of this study is to determine whether the IRT could be a potential new tool to estimate BAT thermogenic activation in patients with severe obesity in response to bariatric surgery. Supraclavicular BAT thermogenic activation was evaluated using IRT in a cohort of 31 patients (50 ± 10 years old, BMI = 44.5 ± 7.8; 15 undergoing laparoscopy sleeve gastrectomy and 16 Roux-en-Y gastric bypass) at baseline and 6 months after a bariatric surgery. Clinical parameters were determined at these same time points. Supraclavicular BAT-related activity was detected in our patients by IRT after a cooling stimulus. The BAT thermogenic activation was higher at 6 months after laparoscopy sleeve gastrectomy (0.06 ± 0.1 vs 0.32 ± 0.1), while patients undergoing to a roux-en-Y gastric bypass did not change their thermogenic response using the same cooling stimulus (0.09 ± 0.1 vs 0.08 ± 0.1). Our study postulates the IRT as a potential tool to evaluate BAT thermogenic activation in patients with obesity before and after a bariatric surgery. Further studies are needed to evaluate differences between LSG technique and RYGB on BAT activation.

Sections du résumé

BACKGROUND
In contrast to the energy-storing role of white adipose tissue (WAT), brown adipose tissue (BAT) acts as the main site of non-shivering thermogenesis in mammals and has been reported to play a role in protection against obesity and associated metabolic alterations in rodents. Infrared thermography (IRT) has been proposed as a novel non-invasive, safe, and quick method to estimate BAT thermogenic activation in humans. The aim of this study is to determine whether the IRT could be a potential new tool to estimate BAT thermogenic activation in patients with severe obesity in response to bariatric surgery.
METHODS
Supraclavicular BAT thermogenic activation was evaluated using IRT in a cohort of 31 patients (50 ± 10 years old, BMI = 44.5 ± 7.8; 15 undergoing laparoscopy sleeve gastrectomy and 16 Roux-en-Y gastric bypass) at baseline and 6 months after a bariatric surgery. Clinical parameters were determined at these same time points.
RESULTS
Supraclavicular BAT-related activity was detected in our patients by IRT after a cooling stimulus. The BAT thermogenic activation was higher at 6 months after laparoscopy sleeve gastrectomy (0.06 ± 0.1 vs 0.32 ± 0.1), while patients undergoing to a roux-en-Y gastric bypass did not change their thermogenic response using the same cooling stimulus (0.09 ± 0.1 vs 0.08 ± 0.1).
CONCLUSIONS
Our study postulates the IRT as a potential tool to evaluate BAT thermogenic activation in patients with obesity before and after a bariatric surgery. Further studies are needed to evaluate differences between LSG technique and RYGB on BAT activation.

Identifiants

pubmed: 32133589
doi: 10.1007/s11695-020-04502-7
pii: 10.1007/s11695-020-04502-7
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

2375-2381

Références

Apostolopoulos V, de Courten MP, Stojanovska L, et al. The complex immunological and inflammatory network of adipose tissue in obesity. Mol Nutr Food Res. 2016;60(1):43–57. https://doi.org/10.1002/mnfr.201500272 .
doi: 10.1002/mnfr.201500272 pubmed: 26331761
Villarroya J, Cereijo R, Villarroya F. An endocrine role for brown adipose tissue? Am J Physiol Endocrinol Metab. 2013;305(5):E567–72. https://doi.org/10.1152/ajpendo.00250.2013 .
doi: 10.1152/ajpendo.00250.2013 pubmed: 23839524
Bartelt A, Bruns OT, Reimer R, et al. Brown adipose tissue activity controls triglyceride clearance. Nat Med. 2011;17(2):200–5. https://doi.org/10.1038/nm.2297 .
doi: 10.1038/nm.2297 pubmed: 21258337
Peirce V, Vidal-Puig A. Regulation of glucose homoeostasis by brown adipose tissue. Lancet Diabetes Endocrinol. 2013;1(4):353–60. https://doi.org/10.1016/S2213-8587(13)70055-X .
doi: 10.1016/S2213-8587(13)70055-X pubmed: 24622420
Petrovic N, Walden TB, Shabalina IG, et al. Chronic peroxisome proliferator-activated receptor gamma (PPARgamma) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-containing adipocytes molecularly distinct from classic brown adipocytes. J Biol Chem. 2010;285(10):7153–64. https://doi.org/10.1074/jbc.M109.053942 .
doi: 10.1074/jbc.M109.053942 pubmed: 20028987
Wu J, Bostrom P, Sparks LM, et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell. 2012;150(2):366–76. https://doi.org/10.1016/j.cell.2012.05.016 .
doi: 10.1016/j.cell.2012.05.016 pubmed: 22796012 pmcid: 3402601
Wankhade UD, Shen M, Yadav H, et al. Novel Browning agents, mechanisms, and therapeutic potentials of Brown adipose tissue. Biomed Res Int. 2016;2016:2365609. https://doi.org/10.1155/2016/2365609 .
doi: 10.1155/2016/2365609 pubmed: 28105413 pmcid: 5220392
Seale P, Conroe HM, Estall J, et al. Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice. J Clin Invest. 2011;121(1):96–105. https://doi.org/10.1172/JCI44271 .
doi: 10.1172/JCI44271 pubmed: 21123942
Villarroya F, Cereijo R, Villarroya J, et al. Brown adipose tissue as a secretory organ. Nat Rev Endocrinol. 2017;13(1):26–35. https://doi.org/10.1038/nrendo.2016.136 .
doi: 10.1038/nrendo.2016.136 pubmed: 27616452
Cereijo R, Sánchez-Infantes D. Brown adipose tissue and browning: more than just a heating device. Endocrinol Diabetes. 2017;64(4):185–7. https://doi.org/10.1016/j.endinu.2017.03.001 .
doi: 10.1016/j.endinu.2017.03.001
WHO. Obesity and overweight. Geneva: World Health Organization; 2017.
Aron-Wisnewsky J, Tordjman J, Poitou C, et al. Human adipose tissue macrophages: m1 and m2 cell surface markers in subcutaneous and omental depots and after weight loss. J Clin Endocrinol Metab. 2009;94(11):4619–23. https://doi.org/10.1210/jc.2009-0925 .
doi: 10.1210/jc.2009-0925 pubmed: 19837929
Pontiroli AE, Morabito A. Long-term prevention of mortality in morbid obesity through bariatric surgery: a systematic review and meta-analysis of trials performed with gastric banding and gastric bypass. Ann Surg. 2011;253:484–7. https://doi.org/10.1097/SLA.0b013e31820d98cb .
doi: 10.1097/SLA.0b013e31820d98cb pubmed: 21245741
Poitou C, Perret C, Mathieu F, et al. Bariatric surgery induces disruption in inflammatory signaling pathways mediated by immune cells in adipose tissue: a RNA-Seq study. PLoS One. 2015;10(5):e0125718. https://doi.org/10.1371/journal.pone.0125718 .
doi: 10.1371/journal.pone.0125718 pubmed: 25938420 pmcid: 4418598
Cummings DE, Cohen RV. Bariatric/metabolic surgery to treat type 2 diabetes in patients with a BMI <35 kg/m2. Diabetes Care. 2016;39(6):924–33. https://doi.org/10.2337/dc16-0350 .
doi: 10.2337/dc16-0350 pubmed: 27222550 pmcid: 4878219
Vijgen GH, Bouvy ND, Teule GJ, et al. Increase in brown adipose tissue activity after weight loss in morbidly obese subjects. J Clin Endocrinol Metab. 2012;97(7):E1229–33. https://doi.org/10.1210/jc.2012-1289 .
doi: 10.1210/jc.2012-1289 pubmed: 22535970
Rachid B, van de Sande-Lee S, Rodovalho S, et al. Distinct regulation of hypothalamic and brown/beige adipose tissue activities in human obesity. Int J Obes. 2015;39(10):1515–22. https://doi.org/10.1038/ijo.2015.94 .
doi: 10.1038/ijo.2015.94
Cypess AM, Lehman S, Williams G, et al. Identification and importance of brown adipose tissue in adult humans. N Engl J Med. 2009;360(15):1509–17. https://doi.org/10.1056/NEJMoa0810780 .
doi: 10.1056/NEJMoa0810780 pubmed: 19357406 pmcid: 2859951
Saito M, Okamatsu-Ogura Y, Matsushita M, et al. High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes. 2009;58(7):1526–31. https://doi.org/10.2337/db09-0530 .
doi: 10.2337/db09-0530 pubmed: 19401428 pmcid: 2699872
van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, et al. Cold-activated brown adipose tissue in healthy men. N Engl J Med. 2009;360(15):1500–8. https://doi.org/10.1056/NEJMoa0808718 .
doi: 10.1056/NEJMoa0808718 pubmed: 19357405
Virtanen KA, Lidell ME, Orava J, et al. Functional brown adipose tissue in healthy adults. N Engl J Med. 2009;360(15):1518–25. https://doi.org/10.1056/NEJMoa0808949 .
doi: 10.1056/NEJMoa0808949 pubmed: 19357407
Dadson P, Hannukainen JC, Din MU, et al. Brown adipose tissue lipid metabolism in morbid obesity: effect of bariatric surgery-induced weight loss. Diabetes Obes Metab. 2018;20(5):1280–8. https://doi.org/10.1111/dom.13233 .
doi: 10.1111/dom.13233 pubmed: 29377423
Chen KY, Cypess AM, Laughlin MR, et al. Brown adipose reporting criteria in imaging STudies (BARCIST 1.0): recommendations for standardized FDG-PET/CT experiments in humans. Cell Metab. 2016;24(2):210–22. https://doi.org/10.1016/j.cmet.2016.07.014 .
doi: 10.1016/j.cmet.2016.07.014 pubmed: 27508870 pmcid: 4981083
Law J, Chalmers J, Morris DE, et al. The use of infrared thermography in the measurement and characterization of brown adipose tissue activation. Temperature. 2018;2(2):147–61. https://doi.org/10.1080/23328940.2017.1397085 .
doi: 10.1080/23328940.2017.1397085
Robinson L, Ojha S, Symonds ME, et al. Body mass index as a determinant of brown adipose tissue function in healthy children. J Pediatr. 2014;164:318–22. https://doi.org/10.1016/j.jpeds.2013.10.005 .
doi: 10.1016/j.jpeds.2013.10.005 pubmed: 24238856
Symonds ME, Henderson K, Elvidge L. Thermal imaging to assess age related changes of skin temperature within the supraclavicular region co-locating with brown adipose tissue in healthy children. J Pediatr. 2012;161:892–8. https://doi.org/10.1016/j.jpeds.2012.04.056 .
doi: 10.1016/j.jpeds.2012.04.056 pubmed: 22677567
Salem V, Izzi-Engbeaya C, Coello C, et al. Glucagon increases energy expenditure independently of brown adipose tissue activation in humans. Diabetes Obes Metab. 2016;18(1):72–81. https://doi.org/10.1111/dom.12585 .
doi: 10.1111/dom.12585 pubmed: 26434748
Lee P, Ho KK, Lee P, et al. Hot fat in a cool man: infrared thermography and brown adipose tissue. Diabetes Obes Metab. 2011;13(1):92–3. https://doi.org/10.1111/j.1463-1326.2010.01318.x .
doi: 10.1111/j.1463-1326.2010.01318.x pubmed: 21114609
Nirengi S, Wakabayashi H, Matsushita M, et al. An optimal condition for the evaluation of human brown adipose tissue by infrared thermography. PLoS One. 2019;14(8):e0220574. https://doi.org/10.1371/journal.pone.0220574 . eCollection 2019
doi: 10.1371/journal.pone.0220574 pubmed: 31449537 pmcid: 6709909
Gagner M, Hutchinson C, Rosenthal R. Fifth international consensus conference: current status of sleeve gastrectomy. Surg Obes Relat Dis. 2016;12(4):750–6. https://doi.org/10.1016/j.soard.2016.01.022 .
doi: 10.1016/j.soard.2016.01.022 pubmed: 27178618
Kaijser MA, van Ramshorst GH, Emous M, et al. A Delphi consensus of the crucial steps in gastric bypass and sleeve gastrectomy procedures in the Netherlands. Obes Surg. 2018;28(9):2634–43. https://doi.org/10.1007/s11695-018-3219-7 .
doi: 10.1007/s11695-018-3219-7 pubmed: 29633151 pmcid: 6132743
Sabench Pereferrer F, Dominguez-Adame Lanuza E, Ibarzabal A, et al. Quality criteria in bariatric surgery: consensus review and recommendations of the Spanish Association of Surgeons and the Spanish Society of Bariatric Surgery. Cir Esp. 2017;95(1):4–16. https://doi.org/10.1016/j.ciresp.2016.09.007 .
doi: 10.1016/j.ciresp.2016.09.007 pubmed: 27979315
Cannon B, Nedergaard J. Brown adipose tissue: function and physiological significance. Physiol Rev. 2004;84(1):277–359. https://doi.org/10.1152/physrev.00015.2003 .
doi: 10.1152/physrev.00015.2003 pubmed: 14715917
Sarasniemi JT, Koskensalo K, Raiko J, et al. Skin temperature may not yield human brown adipose tissue activity in diverse populations. Acta Physiol. 2018;224(3):e13095. https://doi.org/10.1111/apha.13095 .
doi: 10.1111/apha.13095

Auteurs

Irene Piquer-Garcia (I)

Germans Trias i Pujol Research Institute, Barcelona, Spain.

Rubén Cereijo (R)

Department of Biochemistry and Molecular Biomedicine, and Institute of Biomedicine, University of Barcelona, Barcelona, Spain.
Centro de Investigación Biomédica de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain.

Juan Corral-Pérez (J)

MOVE-IT Research Group and Department of Physical Education, Faculty of Education Sciences, University of Cádiz, Cadiz, Spain.
Institute of Research and Innovation in Biomedical Sciences of the Province of Cádiz (INiBICA), University of Cádiz, Cadiz, Spain.

Silvia Pellitero (S)

Germans Trias i Pujol Research Institute, Barcelona, Spain.
Centro de Investigación Biomédica en Fisiopatología de la Diabetes y enfermedades metabólicas (CIBERDEM), ISCIII, Madrid, Spain.

Eva Martínez (E)

Germans Trias i Pujol Research Institute, Barcelona, Spain.

Siri D Taxerås (SD)

Germans Trias i Pujol Research Institute, Barcelona, Spain.

Jordi Tarascó (J)

Germans Trias i Pujol Research Institute, Barcelona, Spain.

Pau Moreno (P)

Germans Trias i Pujol Research Institute, Barcelona, Spain.

José Balibrea (J)

Metabolic and Bariatric Surgery Unit, EAC-BS Center of Excellence, Vall d'Hebron University Hospital, Barcelona, Spain.

Manel Puig-Domingo (M)

Germans Trias i Pujol Research Institute, Barcelona, Spain.
Centro de Investigación Biomédica en Fisiopatología de la Diabetes y enfermedades metabólicas (CIBERDEM), ISCIII, Madrid, Spain.

Dolors Serra (D)

Centro de Investigación Biomédica de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain.
Department of Biochemistry and Physiology, School of Pharmacy, Institut de Biomedicina de la Universitat de Barcelona (IBUB),, Universitat de Barcelona, 08028, Barcelona, Spain.

Laura Herrero (L)

Centro de Investigación Biomédica de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain.
Department of Biochemistry and Physiology, School of Pharmacy, Institut de Biomedicina de la Universitat de Barcelona (IBUB),, Universitat de Barcelona, 08028, Barcelona, Spain.

David Jiménez-Pavón (D)

MOVE-IT Research Group and Department of Physical Education, Faculty of Education Sciences, University of Cádiz, Cadiz, Spain.
Institute of Research and Innovation in Biomedical Sciences of the Province of Cádiz (INiBICA), University of Cádiz, Cadiz, Spain.

Carles Lerin (C)

Endocrinology department, Institut de Recerca Sant Joan de Déu, 08950, Barcelona, Spain.

Francesc Villarroya (F)

Department of Biochemistry and Molecular Biomedicine, and Institute of Biomedicine, University of Barcelona, Barcelona, Spain.
Centro de Investigación Biomédica de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain.

David Sánchez-Infantes (D)

Germans Trias i Pujol Research Institute, Barcelona, Spain. dsanchez@igtp.cat.
Centro de Investigación Biomédica de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain. dsanchez@igtp.cat.
Germans Trias i Pujol Research Institute (IGTP), Campus Can Ruti, Carretera de Can Ruti, Camí de les Escoles s/n, Badalona, 08916, Barcelona, Spain. dsanchez@igtp.cat.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH