Association between cystatin C gene polymorphism and the prevalence of white matter lesion in elderly healthy subjects.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
13 03 2020
Historique:
received: 16 09 2019
accepted: 28 01 2020
entrez: 15 3 2020
pubmed: 15 3 2020
medline: 24 11 2020
Statut: epublish

Résumé

Cystatin C (CST3) is a cysteine protease inhibitor abundant in the central nervous system, and demonstrated to have roles in several pathophysiological processes including vascular remodeling and inflammation. Previously, we showed a relation of CST3 gene polymorphisms with deep and subcortical white matter hyperintensity (DSWMH) in a small case-control study. In this study, we aimed to investigate the relation in a larger cross-sectional study. Participants of a brain health examination program were recruited (n = 1795) in the study, who underwent routine blood tests and cognitive function tests. Cerebral white matter changes were analyzed by MRI. Additionally, 7 single nucleotide polymorphisms (SNPs) (-82G/C, -78T/G, -5G/A, +4A/C, +87C/T, +148G/A and +213G/A) in the promoter and coding regions of CST3 gene were examined. Among them, carriers of the minor allele haplotype -82C/+4C/+148A were significantly associated with decreased CST3 concentration in the plasma. Unadjusted analysis did not show significant relation between carriers of the minor allele haplotype and periventricular hyperintensity (PVH), but DSWMH was marginally (p < 0.054) increased in this group. After adjusting the effects of other variables like age and kidney function, logistic regression analysis revealed that carriers of the minor allele haplotype were at a significantly increased risk of developing both PVH and DSWMH. Thus, our results suggest that carriers of the minor allele haplotype -82C/+4C/+148A of CST3 gene could be at an increased risk to develop cerebral white matter disturbance.

Identifiants

pubmed: 32170118
doi: 10.1038/s41598-020-61383-7
pii: 10.1038/s41598-020-61383-7
pmc: PMC7069982
doi:

Substances chimiques

Cystatin C 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

4688

Références

Abrahamson, M. et al. Structure and expression of the human cystatin C gene. Biochemical journal. 268, 287–294 (1990).
doi: 10.1042/bj2680287 pubmed: 2363674 pmcid: 2363674
Mussap, M. & Plebani, M. Biochemistry and clinical role of human cystatin C. Crit. Rev. Clin. Laboratory Sciences. 41, 467–550 (2004).
doi: 10.1080/10408360490504934
Yamaze, T. et al. Localization of the endogenous cysteine proteinase Inhibitor, cystatin C, and the cysteine proteinase, cathepsin B, to the junctional epithelium in rat gingiva. Acta Histochem. Cytochem. 38, 121–129 (2005).
doi: 10.1267/ahc.38.121
Zavasnik-Bergant, T. et al. Differentiation- and maturation-dependent content, localization, and secretion of cystatin C in human dendritic cells. J. Leukoc. Biol. 78, 122–134 (2005).
doi: 10.1189/jlb.0804451 pubmed: 15829557 pmcid: 15829557
Zavasnik-Bergant, T., Bergant, M., Jaras, M. & Griffiths, G. Different localisation of cystatin C in immature and mature dendritic cells. Radiol. Oncol. 40, 183–188 (2006).
Deng, A., Irizarry, M. C., Nitsch, R. M., Growdon, J. H. & Rebeck, G. W. Elevation of Cystatin C in Susceptible Neurons in Alzheimer’s Disease. Am. J. Pathol. 159, 1061–1068 (2001).
doi: 10.1016/S0002-9440(10)61781-6 pubmed: 11549598 pmcid: 11549598
Wada, Y. et al. Co-localization of cystatin C and prosaposin in cultured neurons and in anterior horn neurons with amyotrophic lateral sclerosis. J. Neurol. Sci. 384, 67–74 (2018).
doi: 10.1016/j.jns.2017.11.023
Abrahamson, M., Barrett, A. J., Salvesen, G. & Grubb, A. Isolation of six cysteine proteinase inhibitors from human urine. Their physicochemical and enzyme kinetic properties and concentrations in biological fluids. J. Biol. chemistry. 261, 11282–11289 (1986).
George, P. M. & Sheat, J. M. Cystatin C quantification in CSF. Clin. chemistry. 35, 179–180 (1989).
doi: 10.1093/clinchem/35.1.179
Aoki, T., Kataoka, H., Ishibashi, R., Nozaki, K. & Hashimoto, N. Cathepsin B, K, and S are expressed in cerebral aneurysms and promote the progression of cerebral aneurysms. Stroke. 29, 2603–2610 (2008).
doi: 10.1161/STROKEAHA.107.513648
Chu, C. et al. Routinized Assessment of Suicide Risk in Clinical Practice: An Empirically Informed Update. J. Clin. Psychol. 71, 1186–1200 (2015).
doi: 10.1002/jclp.22210 pubmed: 26287362 pmcid: 26287362
Nagai, A. et al. Cystatin C and cathepsin B in CSF from patients with inflammatory neurologic diseases. Neurology. 55, 1828–1832 (2000).
doi: 10.1212/WNL.55.12.1828 pubmed: 11134381 pmcid: 11134381
Nagai, A. et al. Involvement of cystatin C in pathophysiology of CNS diseases. Front. bioscience. 13, 3470–3479 (2008).
doi: 10.2741/2941
Staun-Ram, E. & Miller, A. Cathepsins (S and B) and their inhibitor Cystatin C in immune cells: modulation by interferon-beta and role played in cell migration. J. neuroimmunology. 232, 200–206 (2011).
doi: 10.1016/j.jneuroim.2010.10.015
Shi, G. P. et al. Cystatin C deficiency in human atherosclerosis and aortic aneurysms. J. Clin. investigation. 104, 1191–1197 (1999).
doi: 10.1172/JCI7709
Gu, F. F. et al. Relationship between plasma cathepsin S and cystatin C levels and coronary plaque morphology of mild to moderate lesions: an in vivo study using intravascular ultrasound. Chin. Med. J. 122, 2820–2826 (2009).
Chu, S. C. et al. Cathepsin B and cystatin C play an inflammatory role in gouty arthritis of the knee. Clinica Chim. acta; Int. J. Clin. chemistry. 411, 1788–1792 (2010).
doi: 10.1016/j.cca.2010.07.037
Nagai, A. et al. Cathepsin B and H activities and cystatin C concentrations in cerebrospinal fluid from patients with leptomeningeal metastasis. Clinica Chim. acta. 329, 53–60 (2003).
doi: 10.1016/S0009-8981(03)00023-8
Nakane, S. et al. CSF cystatin C and diffusion tensor imaging parameters as biomarkers of upper motor neuron degeneration in amyotrophic lateral sclerosis. Clin. Neurol. neurosurgery. 172, 162–168 (2018).
doi: 10.1016/j.clineuro.2018.07.008
Palsdottir, A., Snorradottir, A. O. & Thorsteinsson, L. Hereditary cystatin C amyloid angiopathy: genetic, clinical, and pathological aspects. Brain Pathol. 16, 55–59 (2006).
doi: 10.1111/j.1750-3639.2006.tb00561.x
Nagai, A. et al. No mutations in cystatin C gene in cerebral amyloid angiopathy with cystatin C deposition. Mol. Chem. neuropathology. 33, 63–78 (1998).
doi: 10.1007/BF02815860
Eriksson, P. et al. Human evidence that the cystatin C gene is implicated in focal progression of coronary artery disease. Arteriosclerosis thrombosis Vasc. biology. 24, 551–557 (2004).
doi: 10.1161/01.ATV.0000117180.57731.36
Benussi, L. et al. Alzheimer disease-associated cystatin C variant undergoes impaired secretion. Neurobiol. disease. 13, 15–21 (2003).
doi: 10.1016/S0969-9961(03)00012-3
Mitaki, S. et al. Contribution of cystatin C gene polymorphisms to cerebral white matter lesions. Cerebrovasc. Dis. 32, 489–496 (2011).
doi: 10.1159/000331921
Nguyen, A. & Hulleman, J. D. Evidence of Alternative Cystatin C Signal Sequence Cleavage Which Is Influenced by the A25T Polymorphism. PLoS one. 11, e0147684, https://doi.org/10.1371/journal.pone.0147684 (2016).
doi: 10.1371/journal.pone.0147684 pubmed: 4741414 pmcid: 4741414
Akerblom, A. et al. Polymorphism of the cystatin C gene in patients with acute coronary syndromes: Results from the PLATelet inhibition and patient Outcomes study. Am. Heart J. 168, 96–102 e2 (2014).
doi: 10.1016/j.ahj.2014.03.010
O’Seaghdha, C. M. et al. Association of a cystatin C gene variant with cystatin C levels, CKD, and risk of incident cardiovascular disease and mortality. Am. J. kidney diseases. 63, 16–22 (2014).
doi: 10.1053/j.ajkd.2013.06.015
Guoxiang, H., Hui, L., Yong, Z., Xunming, J. & Zhuo, C. Association between Cystatin C and SVD in Chinese population. Neurol. Sci. 39, 2197–2202 (2018).
doi: 10.1007/s10072-018-3577-x
Zhang, J. B., Liu, L. F., Li, Z. G., Sun, H. R. & Ju, X. H. Associations between biomarkers of renal function with cerebral microbleeds in hypertensive patients. Am. J. Hypertens. 28, 739–745 (2015).
doi: 10.1093/ajh/hpu229
Lee, M. et al. Impact of elevated cystatin C level on cardiovascular disease risk in predominantly high cardiovascular risk populations: a meta-analysis. Circ. Cardiovasc. Qual. Outcomes. 3, 675–683 (2010).
doi: 10.1161/CIRCOUTCOMES.110.957696 pubmed: 20923994 pmcid: 20923994
O’Hare, A. M. et al. Cystatin C and incident peripheral arterial disease events in the elderly: results from the Cardiovascular Health Study. Arch Intern Med. 165, 2666–2670 22 (2005).
Umegae, N. et al. Cystatin C expression in ischemic white matter lesions. Acta neurologica Scandinavica. 118, 60–67 (2008).
doi: 10.1111/j.1600-0404.2007.00984.x pubmed: 18261165 pmcid: 18261165
Reiber, H. Dynamics of brain-derived proteins in cerebrospinal fluid. Clinica Chim. acta. 310, 173–86 (2001).
doi: 10.1016/S0009-8981(01)00573-3
Ohe, Y., Ishikawa, K., Itoh, Z. & Tatemoto, K. Cultured leptomeningeal cells secrete cerebrospinal fluid proteins. J. neurochemistry. 67, 964–971 (1996).
doi: 10.1046/j.1471-4159.1996.67030964.x
Cole, T. et al. The cDNA structure and expression analysis of the genes for the cysteine proteinase inhibitor cystatin C and for beta 2-microglobulin in rat brain. Eur. J. biochemistry. 186, 35–42 (1989).
doi: 10.1111/j.1432-1033.1989.tb15174.x
Vinters, H. V., Nishimura, G. S., Secor, D. L. & Pardridge, W. M. Immunoreactive A4 and gamma-trace peptide colocalization in amyloidotic arteriolar lesions in brains of patients with Alzheimer’s disease. Am. J. pathology. 137, 233–240 (1990).
Yamamoto-Watanabe, Y. et al. Quantification of cystatin C in cerebrospinal fluid from various neurological disorders and correlation with G73A polymorphism in CST3. Brain research. 1361, 140–145 (2010).
doi: 10.1016/j.brainres.2010.09.033 pubmed: 20849835 pmcid: 20849835
Schulte, S. et al. Cystatin C deficiency promotes inflammation in angiotensin II-induced abdominal aortic aneurisms in atherosclerotic mice. Am. J. pathology. 177, 456–463 (2010).
doi: 10.2353/ajpath.2010.090381
Verhaaren, B. F. et al. Multiethnic genome-wide association study of cerebral white matter hyperintensities on MRI. Circ. Cardiovasc. Genet. 8, 398–409 (2015).
doi: 10.1161/CIRCGENETICS.114.000858 pubmed: 4427240 pmcid: 4427240
Traylor, M. et al. Genome-wide meta-analysis of cerebral white matter hyperintensities in patients with stroke. Neurology. 86, 146–153 (2016).
doi: 10.1212/WNL.0000000000002263 pubmed: 4731688 pmcid: 4731688
Medina-Gomez, C. et al. Challenges in conducting genome-wide association studies in highly admixed multi-ethnic populations: the Generation R Study. Eur. J. Epidemiol. 30, 317–330 (2015).
doi: 10.1007/s10654-015-9998-4 pubmed: 4385148 pmcid: 4385148
Silbert, L. C., Howieson, D. B., Dodge, H. & Kaye, J. A. Cognitive impairment risk: white matter hyperintensity progression matters. Neurology. 73, 120–125 (2009).
doi: 10.1212/WNL.0b013e3181ad53fd pubmed: 2713187 pmcid: 2713187
Nuvolone, M. et al. Cystatin F is a biomarker of prion pathogenesis in mice. PLoS One. 12, e0171923, https://doi.org/10.1371/journal.pone.0171923.eCollection (2017).
doi: 10.1371/journal.pone.0171923.eCollection pubmed: 5298286 pmcid: 5298286
Committee of the Japan Diabetes Society on the Diagnostic Criteria of Diabetes M, Seino, Y. et al. Report of the committee on the classification and diagnostic criteria of diabetes mellitus. J. Diabetes Investig. 1, 212–228 (2010).
doi: 10.1111/j.2040-1124.2010.00074.x
Ichihara, K., Saito, K. & Itoh, Y. Sources of variation and reference intervals for serum cystatin C in a healthy Japanese adult population. Clin. Chem. Lab. Med. 45, 1232–1236 (2007).
doi: 10.1515/CCLM.2007.504
Imai, E. et al. Estimation of glomerular filtration rate by the MDRD study equation modified for Japanese patients with chronic kidney disease. Clin. Exp. nephrology. 11, 41–50 (2007).
doi: 10.1007/s10157-006-0453-4
Fazekas, F., Chawluk, J. B., Alavi, A., Hurtig, H. I. & Zimmerman, R. A. MR signal abnormalities at 1.5 T in Alzheimer’s dementia and normal aging. AJR Am. J. Roentgenol. 149, 351–356 (1987).
doi: 10.2214/ajr.149.2.351

Auteurs

Kyohei Maniwa (K)

Central Clinical Laboratory Division, Shimane University Hospital, Izumo, Japan.

Shozo Yano (S)

Department of Laboratory Medicine, Shimane University Faculty of Medicine, Izumo, Japan.

Abdullah Md Sheikh (AM)

Department of Laboratory Medicine, Shimane University Faculty of Medicine, Izumo, Japan.

Keiichi Onoda (K)

Department of Neurology, Shimane University Faculty of Medicine, Izumo, Japan.

Shingo Mitaki (S)

Department of Neurology, Shimane University Faculty of Medicine, Izumo, Japan.

Minoru Isomura (M)

Shimane University Faculty of Human Sciences, Matsue, Japan.

Seiji Mishima (S)

Central Clinical Laboratory Division, Shimane University Hospital, Izumo, Japan.

Shuhei Yamaguchi (S)

Shimane Prefecture Hospital Bureau, Izumo, Japan.

Toru Nabika (T)

Department of Functional Pathology, Shimane University Faculty of Medicine, Izumo, Japan.

Atsushi Nagai (A)

Department of Neurology, Shimane University Faculty of Medicine, Izumo, Japan. anagai@med.shimane-u.ac.jp.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH