Immunosuppression response to the neonicotinoid insecticide thiacloprid in females and males of the red mason bee Osmia bicornis L.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
13 03 2020
Historique:
received: 08 07 2019
accepted: 28 01 2020
entrez: 15 3 2020
pubmed: 15 3 2020
medline: 24 11 2020
Statut: epublish

Résumé

Solitary bees are frequently exposed to pesticides, which are considered as one of the main stress factors that may lead to population declines. A strong immune defence is vital for the fitness of bees. However, the immune system can be weakened by environmental factors that may render bees more vulnerable to parasites and pathogens. Here we demonstrate for the first time that field-realistic concentrations of the commonly used neonicotinoid insecticide thiacloprid can severely affect the immunocompetence of Osmia bicornis. In detail, males exposed to thiacloprid solutions of 200 and 555 µg/kg showed a reduction in hemocyte density. Moreover, functional aspects of the immune defence - the antimicrobial activity of the hemolymph - were impaired in males. In females, however, only a concentration of 555 µg/kg elicited similar immunosuppressive effects. Although males are smaller than females, they consumed more food solution. This leads to a 2.77 times higher exposure in males, probably explaining the different concentration thresholds observed between the sexes. In contrast to honeybees, dietary exposure to thiacloprid did not affect melanisation or wound healing in O. bicornis. Our results demonstrate that neonicotinoid insecticides can negatively affect the immunocompetence of O. bicornis, possibly leading to an impaired disease resistance capacity.

Identifiants

pubmed: 32170171
doi: 10.1038/s41598-020-61445-w
pii: 10.1038/s41598-020-61445-w
pmc: PMC7070012
doi:

Substances chimiques

Biomarkers 0
Immunosuppressive Agents 0
Insecticides 0
Neonicotinoids 0
Thiazines 0
thiacloprid DSV3A944A4

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

4670

Références

Klein, A.-M. et al Importance of pollinators in changing landscapes for world crops, (2007).
Garibaldi, L. A. et al. Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Sci. 339, 1608–1611, https://doi.org/10.1126/science.1230200 (2013).
doi: 10.1126/science.1230200
Azpiazu, C. et al. Chronic oral exposure to field-realistic pesticide combinations via pollen and nectar: effects on feeding and thermal performance in a solitary bee. Sci. Rep. 9, 13770, https://doi.org/10.1038/s41598-019-50255-4 (2019).
doi: 10.1038/s41598-019-50255-4 pubmed: 31551470 pmcid: 31551470
Robinson, G. E., Winston, M. L., Huang, Z. & Pankiw, T. Queen mandibular gland pheromone influences worker honey bee (Apis mellifera L.) foraging ontogeny and juvenile hormone titers. J. insect Physiol. 44, 685–692 (1998).
doi: 10.1016/S0022-1910(98)00040-7
Bosch, J., Sgolastra, F. & Kemp, W. P. In Bee Pollination in Agricultural Ecosystems (eds Rosalind R. James & Theresa L. Pitts-Singer) Ch. 6, 83–104 (Oxford University Press (2008).
Potts, S. G. et al. Global pollinator declines: trends, impacts and drivers. Trends Ecol. evolution 25, 345–353, https://doi.org/10.1016/j.tree.2010.01.007 (2010).
doi: 10.1016/j.tree.2010.01.007
vanEngelsdorp, D. & Meixner, M. D. A historical review of managed honey bee populations in Europe and the United States and the factors that may affect them. J. invertebrate Pathol. 103, S80–S95, https://doi.org/10.1016/j.jip.2009.06.011 (2010).
doi: 10.1016/j.jip.2009.06.011
Goulson, D., Nicholls, E., Botias, C. & Rotheray, E. L. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Sci. 347, 1255957, https://doi.org/10.1126/science.1255957 (2015).
doi: 10.1126/science.1255957
Whitehorn, P. R., Tinsley, M. C., Brown, M. J., Darvill, B. & Goulson, D. Genetic diversity, parasite prevalence and immunity in wild bumblebees. Proceedings. Biol. sciences/R. Soc. 278, 1195–1202, https://doi.org/10.1098/rspb.2010.1550 (2011).
doi: 10.1098/rspb.2010.1550
Goulson, D. Review: An overview of the environmental risks posed by neonicotinoid insecticides. J. Appl. Ecol. 50, 977–987, https://doi.org/10.1111/1365-2664.12111 (2013).
doi: 10.1111/1365-2664.12111
van der Sluijs, J. P. et al. Conclusions of the Worldwide Integrated Assessment on the risks of neonicotinoids and fipronil to biodiversity and ecosystem functioning. Environ. Sci. Pollut. Res. Int. 22, 148–154, https://doi.org/10.1007/s11356-014-3229-5 (2015).
doi: 10.1007/s11356-014-3229-5 pubmed: 25296936 pmcid: 25296936
Woodcock, B. A. et al. Impacts of neonicotinoid use on long-term population changes in wild bees in England. Nat. Commun. 7, 12459, https://doi.org/10.1038/ncomms12459 (2016).
doi: 10.1038/ncomms12459 pubmed: 27529661 pmcid: 27529661
Sanchez-Bayo, F. et al. Are bee diseases linked to pesticides? - A brief review. Environ. Int. 89–90, 7–11, https://doi.org/10.1016/j.envint.2016.01.009 (2016).
doi: 10.1016/j.envint.2016.01.009 pubmed: 26826357 pmcid: 26826357
Desneux, N., Decourtye, A. & Delpuech, J. M. The sublethal effects of pesticides on beneficial arthropods. Annu. Rev. entomology 52, 81–106, https://doi.org/10.1146/annurev.ento.52.110405.091440 (2007).
doi: 10.1146/annurev.ento.52.110405.091440
David, A. et al. Widespread contamination of wildflower and bee-collected pollen with complex mixtures of neonicotinoids and fungicides commonly applied to crops. Environ. Int. 88, 169–178, https://doi.org/10.1016/j.envint.2015.12.011 (2016).
doi: 10.1016/j.envint.2015.12.011
Blacquiere, T., Smagghe, G., van Gestel, C. A. & Mommaerts, V. Neonicotinoids in bees: a review on concentrations, side-effects and risk assessment. Ecotoxicol. 21, 973–992, https://doi.org/10.1007/s10646-012-0863-x (2012).
doi: 10.1007/s10646-012-0863-x
Whitehorn, P. R., O’Connor, S., Wackers, F. L. & Goulson, D. Neonicotinoid pesticide reduces bumble bee colony growth and queen production. Sci. 336, 351–352, https://doi.org/10.1126/science.1215025 (2012).
doi: 10.1126/science.1215025
Arena, M. & Sgolastra, F. A meta-analysis comparing the sensitivity of bees to pesticides. Ecotoxicol. 23, 324–334, https://doi.org/10.1007/s10646-014-1190-1 (2014).
doi: 10.1007/s10646-014-1190-1
Woodcock, B. A. et al. Country-specific effects of neonicotinoid pesticides on honey bees and wild bees. Sci. 356, 1393–1395, https://doi.org/10.1126/science.aaa1190 (2017).
doi: 10.1126/science.aaa1190
Jin, N., Klein, S., Leimig, F., Bischoff, G. & Menzel, R. The neonicotinoid clothianidin interferes with navigation of the solitary bee Osmia cornuta in a laboratory test. J. Exp. Biol. 218, 2821–2825, https://doi.org/10.1242/jeb.123612 (2015).
doi: 10.1242/jeb.123612 pubmed: 26206356 pmcid: 26206356
Sgolastra, F. et al. Combined exposure to sublethal concentrations of an insecticide and a fungicide affect feeding, ovary development and longevity in a solitary bee. Proceedings of the Royal Society B: Biological Sciences 285, 20180887, 10.1098/rspb.2018.0887 (2018).
European Commission. Commission implementing Regulation (EU) No 485/2013 of 24 May 2013 amending Implementing Regulation (EU) No 540/2011, as regards the condition of approval of the active substances clothianidin, thiamethoxam and imidacloprid, and prohibiting the use and sale of seeds treated with plant protection products containing those active substances. Official Journal of the European Union, L139/12 25.5.2013. (2013).
Klatt, B. K., Rundlöf, M. & Smith, H. G. Maintaining the Restriction on Neonicotinoids in the European Union – Benefits and Risks to Bees and Pollination Services. Frontiers in Ecology and Evolution 4, https://doi.org/10.3389/fevo.2016.00004 (2016).
Godfray, H. C. et al. A restatement of the natural science evidence base concerning neonicotinoid insecticides and insect pollinators. Proceedings. Biological sciences/The Royal Society 281, https://doi.org/10.1098/rspb.2014.0558 (2014).
Brandt, A. et al. Immunosuppression in Honeybee Queens by the Neonicotinoids Thiacloprid and Clothianidin. Sci. Rep. 7, 4673, https://doi.org/10.1038/s41598-017-04734-1 (2017).
doi: 10.1038/s41598-017-04734-1 pubmed: 28680118 pmcid: 28680118
Brandt, A., Gorenflo, A., Siede, R., Meixner, M. & Büchler, R. The Neonicotinoids Thiacloprid, Imidacloprid and Clothianidin affect the immunocompetence of Honey Bees (Apis mellifera L.). J. insect Physiol. 86, 40–47 (2016).
doi: 10.1016/j.jinsphys.2016.01.001
Cabrera, A. R. et al. Initial recommendations for higher-tier risk assessment protocols for bumble bees, Bombus spp. (Hymenoptera: Apidae). Integr. Environ. Assess. Manag. 12, 222–229, https://doi.org/10.1002/ieam.1675 (2016).
doi: 10.1002/ieam.1675 pubmed: 26108565 pmcid: 26108565
Czerwinski, M. A. & Sadd, B. M. Detrimental interactions of neonicotinoid pesticide exposure and bumblebee immunity. J. Exp. Zool. Part. A: Ecol. Integr. Physiol. 327, 273–283, https://doi.org/10.1002/jez.2087 (2017).
doi: 10.1002/jez.2087
Sánchez-Bayo, F. & Desneux, N. Neonicotinoids and the prevalence of parasites and disease in bees. Bee World 92, 34–40, https://doi.org/10.1080/0005772x.2015.1118962 (2015).
doi: 10.1080/0005772x.2015.1118962
Di Prisco, G. et al. Neonicotinoid clothianidin adversely affects insect immunity and promotes replication of a viral pathogen in honey bees. Proc. Natl Acad. Sci. U S Am. 110, 18466–18471, https://doi.org/10.1073/pnas.1314923110 (2013).
doi: 10.1073/pnas.1314923110
López, J. H. et al. Sublethal pesticide doses negatively affect survival and the cellular responses in American foulbrood-infected honeybee larvae. Scientific reports 7, 40853, 10.1038/srep40853, https://www.nature.com/articles/srep40853#supplementary-information (2017).
Alaux, C. et al. Interactions between Nosema microspores and a neonicotinoid weaken honeybees (Apis mellifera). Environ. microbiology 12, 774–782, https://doi.org/10.1111/j.1462-2920.2009.02123.x (2010).
doi: 10.1111/j.1462-2920.2009.02123.x
Ladurner, E., Bosch, J., Kemp, W. & Maini, S. Assessing delayed and acute toxicity of five formulated fungicides to Osmia lignaria Say and Apis mellifera. Vol. 36 (2005).
Scott-Dupree, C. D., Conroy, L. & Harris, C. R. Impact of currently used or potentially useful insecticides for canola agroecosystems on Bombus impatiens (Hymenoptera: Apidae), Megachile rotundata (Hymentoptera: Megachilidae), and Osmia lignaria (Hymenoptera: Megachilidae). J. economic entomology 102, 177–182 (2009).
doi: 10.1603/029.102.0125
Biddinger, D. J. et al. Comparative Toxicities and Synergism of Apple Orchard Pesticides to Apis mellifera (L.) and Osmia cornifrons (Radoszkowski). PLoS One 8, e72587, https://doi.org/10.1371/journal.pone.0072587 (2013).
doi: 10.1371/journal.pone.0072587 pubmed: 24039783 pmcid: 24039783
Heard, M. S. et al. Comparative toxicity of pesticides and environmental contaminants in bees: Are honey bees a useful proxy for wild bee species? Sci. Total. Environ. 578, 357–365, https://doi.org/10.1016/j.scitotenv.2016.10.180 (2017).
doi: 10.1016/j.scitotenv.2016.10.180
Uhl, P. et al. Interspecific sensitivity of bees towards dimethoate and implications for environmental risk assessment. Scientific reports 6, 34439, 10.1038/srep34439 https://www.nature.com/articles/srep34439#supplementary-information (2016).
Sgolastra, F. et al. Synergistic mortality between a neonicotinoid insecticide and an ergosterol-biosynthesis-inhibiting fungicide in three bee species. Pest. Manag. Sci. 73, 1236–1243, https://doi.org/10.1002/ps.4449 (2017).
doi: 10.1002/ps.4449
Gradish, A. E. et al. Comparison of Pesticide Exposure in Honey Bees (Hymenoptera: Apidae) and Bumble Bees (Hymenoptera: Apidae): Implications for Risk Assessments. Env. Entomol. 48, 12–21, https://doi.org/10.1093/ee/nvy168 (2019).
doi: 10.1093/ee/nvy168
Cham, K. O. et al. Pesticide Exposure Assessment Paradigm for Stingless Bees. Env. Entomol. 48, 36–48, https://doi.org/10.1093/ee/nvy137 (2018).
doi: 10.1093/ee/nvy137
Rundlof, M. et al. Seed coating with a neonicotinoid insecticide negatively affects wild bees. Nat. 521, 77–80, https://doi.org/10.1038/nature14420 (2015).
doi: 10.1038/nature14420
Sgolastra, F. et al. Pesticide Exposure Assessment Paradigm for Solitary Bees. Env. Entomol. 48, 22–35, https://doi.org/10.1093/ee/nvy105 (2019).
doi: 10.1093/ee/nvy105
EFSA. Scientific opinion on the science behind the development of a risk assessment of plant protection products on bees (Apis mellifera, Bombus spp. and solitary bees). EFSA J10, 2668 (2012).
Strachecka, A. et al. Insights into the biochemical defence and methylation of the solitary bee Osmia rufa L: A foundation for examining eusociality development. PLoS one 12, e0176539, https://doi.org/10.1371/journal.pone.0176539 (2017).
doi: 10.1371/journal.pone.0176539 pubmed: 28448564 pmcid: 28448564
Frohlich, D. R., Burris, T. E. & Brindley, W. A. Characterization of glutathione S-transferases in a solitary bee, Megachile rotundata (Fab.) (hymenoptera: megachilidae) and inhibition by chalcones, flavone, quercetin and tridiphane-diol. Comp. Biochem. Physiol. Part. B: Comp. Biochem. 94, 661–665, https://doi.org/10.1016/0305-0491(89)90146-6 (1989).
doi: 10.1016/0305-0491(89)90146-6
Hertfordshire, U. o. The Pesticide Properties DataBase (PPDB) developed by the Agriculture & Environment Research Unit (AERU). University of Hertfordshire, 2006-2013 (2013).
Sanchez-Bayo, F. & Goka, K. Pesticide Residues and Bees – A Risk Assessment. PLoS one 9, e94482, https://doi.org/10.1371/journal.pone.0094482 (2014).
doi: 10.1371/journal.pone.0094482 pubmed: 24718419 pmcid: 24718419
Rosenkranz, P. et al. DeBiMo-Zwischenbericht. Deutsches Bienenmonitoring (2017).
Negri, P. et al. Cellular immunity in Apis mellifera: studying hemocytes brings light about bees skills to confront threats. Apidologie, 1–10.
Evans, J. D. et al. Immune pathways and defence mechanisms in honey bees Apis mellifera. Insect Mol. Biol. 15, 645–656, https://doi.org/10.1111/j.1365-2583.2006.00682.x (2006).
doi: 10.1111/j.1365-2583.2006.00682.x pubmed: 17069638 pmcid: 17069638
Wilson-Rich, N., Dres, S. T. & Starks, P. T. The ontogeny of immunity: development of innate immune strength in the honey bee (Apis mellifera). J. insect Physiol. 54, 1392–1399, https://doi.org/10.1016/j.jinsphys.2008.07.016 (2008).
doi: 10.1016/j.jinsphys.2008.07.016 pubmed: 18761014 pmcid: 18761014
Tonk, M., Vilcinskas, A. & Rahnamaeian, M. Insect antimicrobial peptides: potential tools for the prevention of skin cancer. Appl. microbiology Biotechnol. 100, 7397–7405, https://doi.org/10.1007/s00253-016-7718-y (2016).
doi: 10.1007/s00253-016-7718-y
Wilson, E. O. The Insect Societies. (Belknap Press, 1971).
Retschnig, G., Neumann, P. & Williams, G. R. Thiacloprid-Nosema ceranae interactions in honey bees: host survivorship but not parasite reproduction is dependent on pesticide dose. J. invertebrate Pathol. 118, 18–19, https://doi.org/10.1016/j.jip.2014.02.008 (2014).
doi: 10.1016/j.jip.2014.02.008
Porrini, C. et al. The death of honey bees and environmental pollution by pesticides: the honey bees as biological indicators. Bull. Insectology 56, 147–152 (2003).
Quigley, T. P., Amdam, G. V. & Harwood, G. H. Honey bees as bioindicators of changing global agricultural landscapes. Curr. Opin. Insect Sci. 35, 132–137, https://doi.org/10.1016/j.cois.2019.08.012 (2019).
doi: 10.1016/j.cois.2019.08.012 pubmed: 31541967 pmcid: 31541967
Authority, E. F. S. Scientific opinion on the science behind the development of a risk assessment of plant protection products on bees (Apis mellifera, Bombus spp. and solitary bees). EFSA J10, 2668 (2012).
Vanbergen, A. J. & Initiative, tI. P. Threats to an ecosystem service: pressures on pollinators. Front. Ecol. Environ. 11, 251–259, https://doi.org/10.1890/120126 (2013).
doi: 10.1890/120126
Rasband, W. S. ImageJ. U. S. National Institutes of Health, Bethesda, Maryland, USA, doi:http://imagej.nih.gov/ij/ (1997–2016).
Lessells, C. M. & Boag, P. T. Unrepeatable Repeatabilities: A Common Mistake. Auk 104, 116–121, https://doi.org/10.2307/4087240 (1987).
doi: 10.2307/4087240

Auteurs

Annely Brandt (A)

LLH Bee Institute, Erlenstr. 9, 35274, Kirchhain, Germany. annely.brandt@llh.hessen.de.

Birgitta Hohnheiser (B)

LLH Bee Institute, Erlenstr. 9, 35274, Kirchhain, Germany.

Fabio Sgolastra (F)

Dipartimento di Scienze e Tecnologie Agro-Alimentari, Università di Bologna, Bologna, Italy.

Jordi Bosch (J)

CREAF, Bellaterra, 08193, Spain.

Marina Doris Meixner (MD)

LLH Bee Institute, Erlenstr. 9, 35274, Kirchhain, Germany.

Ralph Büchler (R)

LLH Bee Institute, Erlenstr. 9, 35274, Kirchhain, Germany.

Articles similaires

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male
Humans Meals Time Factors Female Adult

Classifications MeSH