Foxc2 Alleviates Ox-LDL-Induced Lipid Accumulation, Inflammation, and Apoptosis of Macrophage via Regulating the Expression of Angptl2.


Journal

Inflammation
ISSN: 1573-2576
Titre abrégé: Inflammation
Pays: United States
ID NLM: 7600105

Informations de publication

Date de publication:
Aug 2020
Historique:
pubmed: 15 3 2020
medline: 11 6 2021
entrez: 15 3 2020
Statut: ppublish

Résumé

The present study aimed to investigate the role of Forkhead box protein C2 (Foxc2) in oxidized low-density lipoprotein (ox-LDL)-induced macrophages and identify the potential mechanisms. RAW264.7 cells, the murine macrophage cell line, were stimulated by ox-LDL, and cell proliferation was examined. The levels of inflammation- and oxidative stress-related markers were detected using kits after induction with ox-LDL. Subsequently, the expression of Foxc2 was measured using Western blotting. After transfection with Foxc2 pcDNA3.1, intracellular lipid droplets were examined using oil red O staining. The levels of total cholesterol (TC), free cholesterol (FC), inflammatory cytokines, and oxidative stress markers were determined. Moreover, apoptosis of RAW264.7 cells was detected using flow cytometry, and apoptosis-related proteins were measured using Western blotting. Angiopoietin-like protein 2 (Angptl2) was predicted as a target gene of Foxc2. Therefore, the expression of Angptl2 was examined after Foxc2 overexpression in ox-LDL-induced RAW264.7 cells. Then, the changes of intracellular lipid droplets, TC, FC, inflammatory cytokines, oxidative stress factors, and cell apoptosis were detected after Angptl2 overexpression or co-transfection with Foxc2 and Angptl2 pcDNA3.1. The results revealed that ox-LDL induction inhibited proliferation of RAW264.7 cells and promoted the release of inflammatory factors. Importantly, the expression of Foxc2 was obviously decreased after stimulation by ox-LDL. Foxc2 overexpression suppressed lipid accumulation, TC, FC levels, inflammation, oxidative stress, and apoptosis induced by ox-LDL, whereas these inhibitory effects were relieved after co-transfection with Angptl2 pcDNA3.1. These findings demonstrated that Foxc2 can alleviate ox-LDL-induced lipid accumulation, inflammation, and apoptosis of macrophage via regulating the expression of Angptl2.

Identifiants

pubmed: 32170602
doi: 10.1007/s10753-020-01217-w
pii: 10.1007/s10753-020-01217-w
doi:

Substances chimiques

Angiopoietin-Like Protein 2 0
Angiopoietin-like Proteins 0
Angptl2 protein, mouse 0
Forkhead Transcription Factors 0
Lipoproteins, LDL 0
mesenchyme fork head 1 protein 0
oxidized low density lipoprotein 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1397-1410

Subventions

Organisme : the Natural Science Foundation of Hunan Province, China
ID : 14JJ7006
Organisme : the Science and Technology Innovation Planning Project of Hunan Province
ID : 2017SK50104
Organisme : the Scientific Research Project of Hunan Health Commission
ID : 20201228

Références

Abderrazak, A., D. Couchie, D.F. Mahmood, R. Elhage, C. Vindis, M. Laffargue, V. Mateo, et al. 2015. Anti-inflammatory and antiatherogenic effects of the NLRP3 inflammasome inhibitor arglabin in ApoE2.Ki mice fed a high-fat diet. Circulation 131 (12): 1061–1070. https://doi.org/10.1161/CIRCULATIONAHA.114.013730 .
doi: 10.1161/CIRCULATIONAHA.114.013730 pubmed: 25613820
Aviram, M. 2011. Atherosclerosis: Cell biology and lipoproteins--inflammation and oxidative stress in atherogenesis: Protective role for paraoxonases. Current Opinion in Lipidology 22 (3): 243–244. https://doi.org/10.1097/MOL.0b013e3283474beb .
doi: 10.1097/MOL.0b013e3283474beb pubmed: 21562389
Bhansali, S., S. Khatri, and V. Dhawan. 2019. Terminalia Arjuna bark extract impedes foam cell formation and promotes apoptosis in ox-LDL-stimulated macrophages by enhancing UPR-CHOP pathway. Lipids in Health and Disease 18 (1): 195. https://doi.org/10.1186/s12944-019-1119-z .
doi: 10.1186/s12944-019-1119-z pubmed: 31706299 pmcid: 6842518
Bhaskar, S., P.R. Sudhakaran, and A. Helen. 2016. Quercetin attenuates atherosclerotic inflammation and adhesion molecule expression by modulating TLR-NF-kappaB signaling pathway. Cellular Immunology 310: 131–140. https://doi.org/10.1016/j.cellimm.2016.08.011 .
doi: 10.1016/j.cellimm.2016.08.011 pubmed: 27585526
Bryk, D., W. Olejarz, and D. Zapolska-Downar. 2017. The role of oxidative stress and NADPH oxidase in the pathogenesis of atherosclerosis. Postȩpy Higieny i Medycyny Doświadczalnej (Online) 71 (0): 57–68. https://doi.org/10.5604/17322693.1229823 .
doi: 10.5604/17322693.1229823
Caland, L., P. Labbe, M. Mamarbachi, L. Villeneuve, G. Ferbeyre, P.E. Noly, M. Carrier, N. Thorin-Trescases, and E. Thorin. 2019. Knockdown of angiopoietin-like 2 induces clearance of vascular endothelial senescent cells by apoptosis, promotes endothelial repair and slows atherogenesis in mice. Aging (Albany NY) 11 (11): 3832–3850. https://doi.org/10.18632/aging.102020 .
doi: 10.18632/aging.102020
Chen, D.D., L.L. Hui, X.C. Zhang, and Q. Chang. 2018. NEAT1 contributes to ox-LDL-induced inflammation and oxidative stress in macrophages through inhibiting miR-128. Journal of Cellular Biochemistry. https://doi.org/10.1002/jcb.27541 .
Chen, K.C., and S.H. Juo. 2012. MicroRNAs in atherosclerosis. The Kaohsiung Journal of Medical Sciences 28 (12): 631–640. https://doi.org/10.1016/j.kjms.2012.04.001 .
doi: 10.1016/j.kjms.2012.04.001 pubmed: 23217354
Duewell, P., H. Kono, K.J. Rayner, C.M. Sirois, G. Vladimer, F.G. Bauernfeind, G.S. Abela, L. Franchi, G. Nuñez, M. Schnurr, T. Espevik, E. Lien, K.A. Fitzgerald, K.L. Rock, K.J. Moore, S.D. Wright, V. Hornung, and E. Latz. 2010. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464 (7293): 1357–1361. https://doi.org/10.1038/nature08938 .
doi: 10.1038/nature08938 pubmed: 20428172 pmcid: 2946640
Farhat, N., N. Thorin-Trescases, M. Mamarbachi, L. Villeneuve, C. Yu, C. Martel, N. Duquette, M. Gayda, A. Nigam, M. Juneau, B.G. Allen, and E. Thorin. 2013. Angiopoietin-like 2 promotes Atherogenesis in mice. Journal of the American Heart Association 2 (3): 13. https://doi.org/10.1161/jaha.113.000201 .
doi: 10.1161/jaha.113.000201
Gan, L., Z. Liu, F. Feng, T. Wu, D. Luo, C. Hu, and C. Sun. 2018. Foxc2 coordinates inflammation and browning of white adipose by leptin-STAT3-PRDM16 signal in mice. International Journal of Obesity 42 (2): 252–259. https://doi.org/10.1038/ijo.2017.208 .
doi: 10.1038/ijo.2017.208 pubmed: 28925407
Gan, L., Z.J. Liu, W. Jin, Z.J. Zhou, and C. Sun. 2015. Foxc2 enhances proliferation and inhibits apoptosis through activating Akt/mTORC1 signaling pathway in mouse preadipocytes. Journal of Lipid Research 56 (8): 1471–1480. https://doi.org/10.1194/jlr.M057679 .
doi: 10.1194/jlr.M057679 pubmed: 26113535 pmcid: 4513988
Guo, C.X., R. Ma, X.Y. Liu, T. Chen, Y. Li, Y. Yu, J.C. Duan, X.Q. Zhou, Y.B. Li, and Z.W. Sun. 2018. Silica nanoparticles promote oxLDL-induced macrophage lipid accumulation and apoptosis via endoplasmic reticulum stress signaling. Science of the Total Environment 631-632: 570–579. https://doi.org/10.1016/j.scitotenv.2018.02.312 .
doi: 10.1016/j.scitotenv.2018.02.312 pubmed: 29533793
Iida, K., H. Koseki, H. Kakinuma, N. Kato, Y. Mizutani-Koseki, H. Ohuchi, H. Yoshioka, S. Noji, K. Kawamura, Y. Kataoka, F. Ueno, M. Taniguchi, N. Yoshida, T. Sugiyama, and N. Miura. 1997. Essential roles of the winged helix transcription factor MFH-1 in aortic arch patterning and skeletogenesis. Development 124 (22): 4627–4638.
pubmed: 9409679
Jia, H., H. Li, Y. Zhang, C. Li, Y. Hu, and C. Xia. 2015. Association between red blood cell distribution width (RDW) and carotid artery atherosclerosis (CAS) in patients with primary ischemic stroke. Archives of Gerontology and Geriatrics 61 (1): 72–75. https://doi.org/10.1016/j.archger.2015.04.005 .
doi: 10.1016/j.archger.2015.04.005 pubmed: 25957866
Jia, S.J., K.Q. Gao, and M. Zhao. 2017. Epigenetic regulation in monocyte/macrophage: A key player during atherosclerosis. Cardiovascular Therapeutics 35 (3). https://doi.org/10.1111/1755-5922.12262 .
Li, D., and Y. Tan. 2019. TIPE2 suppresses atherosclerosis by exerting a protective effect on macrophages via the inhibition of the Akt signaling pathway. Experimental and Therapeutic Medicine 17 (4): 2937–2944. https://doi.org/10.3892/etm.2019.7316 .
doi: 10.3892/etm.2019.7316 pubmed: 30936963 pmcid: 6434246
Li, E., T. Wang, F. Wang, T. Wang, L.Q. Sun, L. Li, S.H. Niu, and J.Y. Zhang. 2015. FGF21 protects against ox-LDL induced apoptosis through suppressing CHOP expression in THP1 macrophage derived foam cells. BMC Cardiovascular Disorders 15: 80. https://doi.org/10.1186/s12872-015-0077-2 .
doi: 10.1186/s12872-015-0077-2 pubmed: 26223891 pmcid: 4518604
Libby, P., P.M. Ridker, and G.K. Hansson. 2011. Progress and challenges in translating the biology of atherosclerosis. Nature 473 (7347): 317–325. https://doi.org/10.1038/nature10146 .
doi: 10.1038/nature10146 pubmed: 21593864
Liu, J.Y., S. Liang, Z. Du, J.Y. Zhang, B.Y. Sun, T. Zhao, X.Z. Yang, Y.F. Shi, J.C. Duan, and Z.W. Sun. 2019. PM2.5 aggravates the lipid accumulation, mitochondrial damage and apoptosis in macrophage foam cells. Environmental Pollution 249: 482–490. https://doi.org/10.1016/j.envpol.2019.03.045 .
doi: 10.1016/j.envpol.2019.03.045 pubmed: 30928520
Long, L., and Y. Song. 2018. Dietary ellagic acid is protective for atherosclerosis. International Journal of Cardiology 256: 12. https://doi.org/10.1016/j.ijcard.2017.12.094 .
doi: 10.1016/j.ijcard.2017.12.094 pubmed: 29454396
Meng, F., J. Yan, Q. Ma, Y. Jiao, L. Han, J. Xu, F. Yang, and J. Liu. 2018. Expression status and clinical significance of lncRNA APPAT in the progression of atherosclerosis. PeerJ 6: e4246. https://doi.org/10.7717/peerj.4246 .
doi: 10.7717/peerj.4246 pubmed: 29372117 pmcid: 5775756
Moore, K.J., and I. Tabas. 2011. Macrophages in the pathogenesis of atherosclerosis. Cell 145 (3): 341–355. https://doi.org/10.1016/j.cell.2011.04.005 .
doi: 10.1016/j.cell.2011.04.005 pubmed: 21529710 pmcid: 3111065
Pan, M.S., Y.J. Huo, C.T. Wang, Y.H. Zhang, Z.Y. Dai, and B. Li. 2019. Positively charged peptides from casein hydrolysate show strong inhibitory effects on LDL oxidation and cellular lipid accumulation in Raw264.7 cells. International Dairy Journal 91: 119–128. https://doi.org/10.1016/j.idairyj.2018.09.011 .
doi: 10.1016/j.idairyj.2018.09.011
Peng, S., L.W. Xu, X.Y. Che, Q.Q. Xiao, J. Pu, Q. Shao, and B. He. 2018. Atorvastatin inhibits inflammatory response, attenuates lipid deposition, and improves the stability of vulnerable atherosclerotic plaques by modulating autophagy. Frontiers in Pharmacology 9: 17. https://doi.org/10.3389/fphar.2018.00438 .
doi: 10.3389/fphar.2018.00438
Rahman, K., Y. Vengrenyuk, S.A. Ramsey, N.R. Vila, N.M. Girgis, J. Liu, V. Gusarova, J. Gromada, A. Weinstock, K.J. Moore, P. Loke, and E.A. Fisher. 2017. Inflammatory Ly6Chi monocytes and their conversion to M2 macrophages drive atherosclerosis regression. The Journal of Clinical Investigation 127 (8): 2904–2915. https://doi.org/10.1172/JCI75005 .
doi: 10.1172/JCI75005 pubmed: 28650342 pmcid: 5531402
Rios, F.J., M. Gidlund, and S. Jancar. 2011. Pivotal role for platelet-activating factor receptor in CD36 expression and oxLDL uptake by human monocytes/macrophages. Cellular Physiology and Biochemistry 27 (3–4): 363–372. https://doi.org/10.1159/000327962 .
doi: 10.1159/000327962 pubmed: 21471725
Sasaki, Y., M. Ohta, D. Desai, J.L. Figueiredo, M.C. Whelan, T. Sugano, M. Yamabi, W. Yano, T. Faits, K. Yabusaki, H. Zhang, A.K. Mlynarchik, K. Inoue, K. Mizuno, and M. Aikawa. 2015. Angiopoietin like protein 2 (ANGPTL2) promotes adipose tissue macrophage and T lymphocyte accumulation and leads to insulin resistance. PLoS One 10 (7): 18. https://doi.org/10.1371/journal.pone.0131176 .
doi: 10.1371/journal.pone.0131176
Seimon, T., and I. Tabas. 2009. Mechanisms and consequences of macrophage apoptosis in atherosclerosis. Journal of Lipid Research 50 (Suppl): S382–S387. https://doi.org/10.1194/jlr.R800032-JLR200 .
doi: 10.1194/jlr.R800032-JLR200 pubmed: 18953058 pmcid: 2674693
Tabata, M., T. Kadomatsu, S. Fukuhara, K. Miyata, Y. Ito, M. Endo, T. Urano, H.J. Zhu, H. Tsukano, H. Tazume, K. Kaikita, K. Miyashita, T. Iwawaki, M. Shimabukuro, K. Sakaguchi, T. Ito, N. Nakagata, T. Yamada, H. Katagiri, M. Kasuga, Y. Ando, H. Ogawa, N. Mochizuki, H. Itoh, T. Suda, and Y. Oike. 2009. Angiopoietin-like protein 2 promotes chronic adipose tissue inflammation and obesity-related systemic insulin resistance. Cell Metabolism 10 (3): 178–188. https://doi.org/10.1016/j.cmet.2009.08.003 .
doi: 10.1016/j.cmet.2009.08.003 pubmed: 19723494
Wang, J.C., and M. Bennett. 2012. Aging and atherosclerosis: Mechanisms, functional consequences, and potential therapeutics for cellular senescence. Circulation Research 111 (2): 245–259. https://doi.org/10.1161/CIRCRESAHA.111.261388 .
doi: 10.1161/CIRCRESAHA.111.261388 pubmed: 22773427
Xu, Y.J., P. Li, L. Zheng, F.X. Guo, C.M. Kang, L. Ding, B.M. Xu, et al. 2019. Forkhead box C2 attenuates lipopolysaccharide-induced cell adhesion via suppression of intercellular adhesion Molecule-1 expression in human umbilical vein endothelial cells. DNA and Cell Biology 38 (6): 583–591. https://doi.org/10.1089/dna.2019.4663 .
doi: 10.1089/dna.2019.4663 pubmed: 30994379
Yan, L., Z. Liu, H. Yin, Z. Guo, and Q. Luo. 2019. Silencing of MEG3 inhibited ox-LDL-induced inflammation and apoptosis in macrophages via modulation of the MEG3/miR-204/CDKN2A regulatory axis. Cell Biology International 43 (4): 409–420. https://doi.org/10.1002/cbin.11105 .
doi: 10.1002/cbin.11105 pubmed: 30672051
Zahid, M. K., M. Rogowski, C. Ponce, M. Choudhury, N. Moustaid-Moussa, and S. M. Rahman. CCAAT/enhancer-binding protein beta (C/EBP beta) knockdown reduces inflammation, ER stress, and apoptosis, and promotes autophagy in oxLDL-treated RAW264.7 macrophage cells. Molecular and Cellular Biochemistry:13. https://doi.org/10.1007/s11010-019-03642-4 .
Zhang, C., J. Chen, Y. Liu, and D. Xu. 2019. Sialic acid metabolism as a potential therapeutic target of atherosclerosis. Lipids in Health and Disease 18 (1): 173. https://doi.org/10.1186/s12944-019-1113-5 .
doi: 10.1186/s12944-019-1113-5 pubmed: 31521172 pmcid: 6745061
Zhang, E., and Y. Wu. 2013. MicroRNAs: Important modulators of oxLDL-mediated signaling in atherosclerosis. Journal of Atherosclerosis and Thrombosis 20 (3): 215–227. https://doi.org/10.5551/jat.15180 .
doi: 10.5551/jat.15180 pubmed: 23064493
Zhang, Q., J. Hu, Y. Wu, H. Luo, W. Meng, B. Xiao, X. Xiao, Z. Zhou, and F. Liu. 2019. Rheb (Ras homolog enriched in brain 1) deficiency in mature macrophages prevents atherosclerosis by repressing macrophage proliferation, inflammation, and lipid uptake. Arteriosclerosis, Thrombosis, and Vascular Biology 39 (9): 1787–1801. https://doi.org/10.1161/ATVBAHA.119.312870 .
doi: 10.1161/ATVBAHA.119.312870 pubmed: 31315433
Zheng, G.L., H.Z. Li, T. Zhang, L.B. Yang, S.T. Yao, S.H. Chen, M.C. Zheng, Q. Zhao, and H. Tian. 2018. Irisin protects macrophages from oxidized low density lipoprotein-induced apoptosis by inhibiting the endoplasmic reticulum stress pathway. Saudi Journal of Biological Sciences 25 (5): 849–857. https://doi.org/10.1016/j.sjbs.2017.08.018 .
doi: 10.1016/j.sjbs.2017.08.018 pubmed: 30108431
Zhou, P.L., M. Li, X.W. Han, Y.H. Bi, W.G. Zhang, Z.Y. Wu, and G. Wu. 2019. Perilipin 5 deficiency promotes atherosclerosis progression through accelerating inflammation, apoptosis, and oxidative stress. Journal of Cellular Biochemistry 120 (11): 19107–19123. https://doi.org/10.1002/jcb.29238 .
doi: 10.1002/jcb.29238 pubmed: 31297870

Auteurs

Liu Yang (L)

International Medical Center, Geriatric Department, National clinical research center of geriatric diseases, Xiangya Hospital of Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, China. liuyangmon21@163.com.

Tie Li (T)

Department of Cardiology, Changsha Central Hospital, Changsha, 410000, Hunan, China.

Lihuang Zha (L)

Department of Cardiology, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, China.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
C-Reactive Protein Humans Biomarkers Inflammation
Humans Immune Checkpoint Inhibitors Lung Neoplasms Prognosis Inflammation

Classifications MeSH