Facile green synthesis approach for the production of chromium oxide nanoparticles and their different in vitro biological activities.
Anti-Bacterial Agents
/ pharmacology
Antioxidants
/ pharmacology
Cell Line, Tumor
Cell Survival
/ drug effects
Chromium Compounds
/ chemistry
Crystallization
Epithelial Cells
/ drug effects
Green Chemistry Technology
Hep G2 Cells
Humans
Leishmania tropica
/ drug effects
Metal Nanoparticles
/ chemistry
Microscopy, Electron, Scanning
Phytochemicals
/ chemistry
Plant Extracts
/ chemistry
Spectroscopy, Fourier Transform Infrared
Cr2O3NPs
anticancer
antileishmanial
antimicrobial
biocompatibility
protein kinase
Journal
Microscopy research and technique
ISSN: 1097-0029
Titre abrégé: Microsc Res Tech
Pays: United States
ID NLM: 9203012
Informations de publication
Date de publication:
Jun 2020
Jun 2020
Historique:
received:
21
11
2019
revised:
03
01
2020
accepted:
04
02
2020
pubmed:
15
3
2020
medline:
7
2
2021
entrez:
15
3
2020
Statut:
ppublish
Résumé
Green synthesis of nanoparticles using plants has become a promising substitute for the conventional chemical synthesis methods. In the present study, our aim was to synthesize chromium oxide nanoparticles (Cr
Substances chimiques
Anti-Bacterial Agents
0
Antioxidants
0
Chromium Compounds
0
Phytochemicals
0
Plant Extracts
0
chromium dioxide
7BHJ7466GL
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
706-719Informations de copyright
© 2020 Wiley Periodicals, Inc.
Références
Abbasi, B. A., Iqbal, J., Ahmad, R., Bibi, S., Mahmood, T., Kanwal, S., & Hameed, S. (2019). Potential phytochemicals in the prevention and treatment of esophagus cancer: A green therapeutic approach. Pharmacological Reports, 71(4), 644-652. https://doi.org/10.1016/j.pharep.2019.03.001
Abbasi, B. A., Iqbal, J., Ahmad, R., Zia, L., Kanwal, S., Mahmood, T., … Chen, J. (2019). Bioactivities of Geranium wallichianum leaf extracts conjugated with zinc oxide nanoparticles. Biomolecules, 10(1), 38. https://doi.org/10.3390/biom10010038
Abbasi, B. A., Iqbal, J., Mahmood, T., Ahmad, R., Kanwal, S., & Afridi, S. (2019). Plant-mediated synthesis of nickel oxide nanoparticles (NiO) via Geranium wallichianum: Characterization and different biological applications. Materials Research Express, 6(8), 0850a7. https://doi.org/10.1088/2053-1591/ab23e1
Abbasi, B. A., Iqbal, J., Mahmood, T., Khalil, A. T., Ali, B., Kanwal, S., & Ahmad, R. (2018). Role of dietary phytochemicals in modulation of miRNA expression: Natural swords combating breast cancer. Asian Pacific Journal of Tropical Medicine, 11(9), 501. https://doi.org/10.4103/1995-7645.242314
Abbasi, B. A., Iqbal, J., Mahmood, T., Qyyum, A., & Kanwal, S. (2019). Biofabrication of iron oxide nanoparticles by leaf extract of Rhamnus virgata: Characterization and evaluation of cytotoxic, antimicrobial and antioxidant potentials. Applied Organometallic Chemistry, 33(7), e4947. https://doi.org/10.1002/aoc.4947
Abbasi, B. A., Iqbal, J., Zahra, S. A., Shahbaz, A., Kanwal, S., Rabbani, A., & Mahmood, T. (2019). Bioinspired synthesis and activity characterization of iron oxide nanoparticles made using Rhamnus Triquetra leaf extract. Material Research Express, 6(12), 1-30. https://doi.org/10.1088/2053-1591/ab664d
Ali, A., Ambreen, S., Javed, R., Tabassum, S., Ul Haq, I., & Zia, M. (2017). ZnO nanostructure fabrication in different solvents transforms physio-chemical, biological and photodegradable properties. Materials Science and Engineering: C, 74, 137-145. https://doi.org/10.1016/j.msec.2017.01.004
Amenya, H. A., Gathumbi, P. K., Mbaria, J. M., Thaiyah, A. G., & Thoithi, G. N. (2011). A Journal of the Kenya Veterinary Association. Kenya Veterinarian, 35, 1.
Balachandar, R., Gurumoorthy, P., Karmegam, N., Barabadi, H., Subbaiya, R., Anand, K., & Saravanan, M. (2019). Plant-mediated synthesis, characterization and bactericidal potential of emerging silver nanoparticles using stem extract of Phyllanthus pinnatus: A recent advance in phytonanotechnology. Journal of Cluster Science, 30(6), 1481-1488. https://doi.org/10.1007/s10876-019-01591-y
Balachandran, U., Siegel, R. W., Liao, Y. X., & Askew, T. R. (1995). Synthesis, sintering, and magnetic properties of nanophase Cr2O3. Nanostructured Materials, 5(5), 505-512. https://doi.org/10.1016/0965-9773(95)00266-H
Baqi, A., Tareen, R. B., Mengal, A., Khan, N., Behlil, F., Achakzai, A. K. K., & Faheem, M. (2018). Determination of antioxidants in two medicinally important plants, Haloxylon griffithii and Convolvulus leiocalycinus, of Balochistan. Pure and Applied Biology, 7(1), 296-308. https://doi.org/10.19045/bspab.2018.70036
Boomi, P., Ganesan, R. M., Poorani, G., Prabu, H. G., Ravikumar, S., & Jeyakanthan, J. (2019). Biological synergy of greener gold nanoparticles by using Coleus aromaticus leaf extract. Materials Science and Engineering: C, 99, 202-210. https://doi.org/10.1016/j.msec.2019.01.105
Daher, S., Massarwa, M., Benson, A. A., & Khoury, T. (2018). Current and future treatment of hepatocellular carcinoma: An updated comprehensive review. Journal of Clinical and Translational Hepatology, 6(1), 69-78. https://dx.doi.org/10.14218%2FJCTH.2017.00031
de Almeida, M. C., Silva, A. C., Barral, A., & Barral Netto, M. (2000). A simple method for human peripheral blood monocyte isolation. Memorias do Instituto Oswaldo Cruz, 95, 221-223. https://doi.org/10.1590/S0074-02762000000200014
El-Naggar, N. E. A., Hussein, M. H., & El-Sawah, A. A. (2018). Phycobiliprotein-mediated synthesis of biogenic silver nanoparticles, characterization, in vitro and in vivo assessment of anticancer activities. Scientific Reports, 8(1), 8925. https://doi.org/10.1038/s41598-018-27276-6
El-Sheikh, S. M., Mohamed, R. M., & Fouad, O. A. (2009). Synthesis and structure screening of nanostructured chromium oxide powders. Journal of Alloys and Compounds, 482(1-2), 302-307. https://doi.org/10.1016/j.jallcom.2009.04.011
Fatima, H., Khan, K., Zia, M., Ur-Rehman, T., Mirza, B., & Haq, I. U. (2015). Extraction optimization of medicinally important metabolites from Datura innoxia Mill.: an in vitro biological and phytochemical investigation. BMC complementary and alternative medicine, 15(1), 376. https://doi.org/10.1186/s12906-015-0891-1
Fu, X. Z., Luo, X. X., Luo, J. L., Chuang, K. T., Sanger, A. R., & Krzywicki, A. (2011). Ethane dehydrogenation over nano-Cr2O3 anode catalyst in proton ceramic fuel cell reactors to co-produce ethylene and electricity. Journal of Power Sources, 196(3), 1036-1041. https://doi.org/10.1016/j.jpowsour.2010.08.043
Gupta, N., & Resmi, S. P. (2016). Synthesis of chromium (V) oxide nanoparticles by Mukia maderaspatana and mulberry leaves extract and its characterization. Imperial Journal of Interdisciplinary Research, 2(11), 2454-1362. Retrieved from https://www.researchgate.net/profile/Resmi_S_P/publication/309040610
Hameed, S., Iqbal, J., Ali, M., Khalil, A. T., Abbasi, B. A., Numan, M., & Shinwari, Z. K. (2019). Green synthesis of zinc nanoparticles through plant extracts: Establishing a novel era in cancer theranostics. Materials Research Express, 6(10), 102005. https://doi.org/10.1088/2053-1591/ab40df
Hameed, S., Khalil, A. T., Ali, M., Numan, M., Khamlich, S., Shinwari, Z. K., & Maaza, M. (2019). Greener synthesis of ZnO and Ag-ZnO nanoparticles using Silybum marianum for diverse biomedical applications. Nanomedicine, 14(6), 655-673. https://doi.org/10.2217/nnm-2018-0279
Hameed, S., Shah, S. A., Iqbal, J., Numan, M., Muhammad, W., Junaid, M., & Umer, F. (2019). Cannabis sativa mediated synthesis of gold nanoparticles and its biomedical properties. Bioinspired, Biomimetic and Nanobiomaterials, 1-8. https://doi.org/10.1680/jbibn.19.00023
Hassan, D., Khalil, A. T., Solangi, A. R., El-Mallul, A., Shinwari, Z. K., & Maaza, M. (2019). Physiochemical properties and novel biological applications of Callistemon viminalis-mediated α-Cr2O3 nanoparticles. Applied Organometallic Chemistry, 33(8), e5041. https://doi.org/10.1002/aoc.5041
He, Y., Li, X., Zheng, Y., Wang, Z., Ma, Z., Yang, Q., & Zhang, H. (2018). A green approach for synthesizing silver nanoparticles, and their antibacterial and cytotoxic activities. New Journal of Chemistry, 42(4), 2882-2888. https://doi.org/10.1039/C7NJ04224H
He, Y., Wei, F., Ma, Z., Zhang, H., Yang, Q., Yao, B., & Zhang, Q. (2017). Green synthesis of silver nanoparticles using seed extract of Alpinia katsumadai, and their antioxidant, cytotoxicity, and antibacterial activities. RSC Advances, 7(63), 39842-39851. https://doi.org/10.1039/c7ra05286c
Iqbal, J., Abbasi, B. A., Ahmad, R., Batool, R., Mahmood, T., Ali, B., & Bashir, S. (2019). Potential phytochemicals in the fight against skin cancer: Current landscape and future perspectives. Biomedicine & Pharmacotherapy, 109, 1381-1393. https://doi.org/10.1016/j.biopha.2018.10.107
Iqbal, J., Abbasi, B. A., Ahmad, R., Mahmood, T., Ali, B., Khalil, A. T., & Munir, A. (2018). Nanomedicines for developing cancer nanotherapeutics: From benchtop to bedside and beyond. Applied Microbiology and Biotechnology, 102(22), 9449-9470. https://doi.org/10.1007/s00253-018-9352-3
Iqbal, J., Abbasi, B. A., Ahmad, R., Shahbaz, A., Zahra, S. A., Kanwal, S., & Mahmood, T. (2019). Biogenic synthesis of green and cost effective iron nanoparticles and evaluation of their potential biomedical properties. Journal of Molecular Structure, 1199, 126979. https://doi.org/10.1016/j.molstruc.2019.126979
Iqbal, J., Abbasi, B. A., Batool, R., Khalil, A. T., Hameed, S., Kanwal, S., & Mahmood, T. (2019). Biogenic synthesis of green and cost effective cobalt oxide nanoparticles using Geranium wallichianum leaves extract and evaluation of in vitro antioxidant, antimicrobial, cytotoxic and enzyme inhibition properties. Materials Research Express, 6(11), 115407. https://doi.org/10.1088/2053-1591/ab4f04
Iqbal, J., Abbasi, B. A., Batool, R., Mahmood, T., Ali, B., Khalil, A. T., & Ahmad, R. (2018). Potential phytocompounds for developing breast cancer therapeutics: Nature's healing touch. European Journal of Pharmacology, 827, 125-148. https://doi.org/10.1016/j.ejphar.2018.03.007
Iqbal, J., Abbasi, B. A., Mahmood, T., Hameed, S., Munir, A., & Kanwal, S. (2019). Green synthesis and characterizations of nickel oxide nanoparticles using leaf extract of Rhamnus virgata and their potential biological applications. Applied Organometallic Chemistry, 33, e4950. https://doi.org/10.1002/aoc.4950
Iqbal, J., Abbasi, B. A., Mahmood, T., Kanwal, S., Ahmad, R., & Ashraf, M. (2019). Plant-extract mediated green approach for the synthesis of ZnONPs: Characterization and evaluation of cytotoxic, antimicrobial and antioxidant potentials. Journal of Molecular Structure, 1189, 315-327. https://doi.org/10.1016/j.molstruc.2019.04.060
Iqbal, J., Abbasi, B. A., Mahmood, T., Kanwal, S., Ali, B., Shah, S. A., & Khalil, A. T. (2017). Plant-derived anticancer agents: A green anticancer approach. Asian Pacific Journal of Tropical Biomedicine, 7(12), 1129-1150. https://doi.org/10.1016/j.apjtb.2017.10.016
Kalidhar, S. B., & Sharma, P. (1984). Physcion-8-O-gentiobioside from Rhamnus virgata. Phytochemistry, 23(5), 1196-1197. https://doi.org/10.1016/S0031-9422(00)82645-X
Kalidhar, S. B., & Sharma, P. (1985). Chemical components of Rhamnus virgata. Journal of the Indian Chemical Society, 62(5), 411-412. https://doi.org/10.1016/S0031-9422(00)82645-X#
Kanakalakshmi, A., Janaki, V., Shanthi, K., & Kamala-Kannan, S. (2017). Biosynthesis of Cr(III) nanoparticles from electroplating wastewater using chromium-resistant Bacillus subtilis and its cytotoxicity and antibacterial activity. Artificial Cells, Nanomedicine, and Biotechnology, 45(7), 1304-1309. https://doi.org/10.1080/21691401.2016.1228660
Kaye, P., & Scott, P. (2011). Leishmaniasis: Complexity at the host-pathogen interface. Nature Reviews Microbiology, 9(8), 604-615. https://doi.org/10.1038/nrmicro2608
Khan, F. U., Chen, Y., Khan, N. U., Ahmad, A., Tahir, K., Khan, Z. U., & Wan, P. (2017). Visible light inactivation of E. coli, cytotoxicity and ROS determination of biochemically capped gold nanoparticles. Microbial Pathogenesis, 107, 419-424. https://doi.org/10.1016/j.micpath.2017.04.024
Kim, D. W., & Oh, S. G. (2005). Agglomeration behavior of chromia nanoparticles prepared by amorphous complex method using chelating effect of citric acid. Materials Letters, 59, 976-980. https://doi.org/10.1016/j.matlet.2004.09.053
Li, L., Zhu, Z., Yao, X., Lu, G., & Yan, Z. (2008). Synthesis and characterization of chromium oxide nanocrystals via solid thermal decomposition at low temperature. Microporous and Mesoporous Materials, 112, 621-626. https://doi.org/10.1021/nn300934k
Oyedemi, S. O., Oyedemi, B. O., Ijeh, I. I., Ohanyerem, P. E., Coopoosamy, R. M., & Aiyegoro, O. A. (2017). Alpha-amylase inhibition and antioxidative capacity of some antidiabetic plants used by the traditional healers in Southeastern Nigeria. The Scientific World Journal, 2017, 3592491. https://doi.org/10.1155/2017/3592491
Patah, A., Takasaki, A., & Szmyd, J. S. (2009). Influence of multiple oxide (Cr2O3/Nb2O5) addition on the sorption kinetics of MgH2. International Journal of Hydrogen Energy, 34(7), 3032-3037. https://doi.org/10.1016/j.ijhydene.2009.01.086
Pei, Z., Xu, H., & Zhang, Y. (2009). Preparation of Cr2O3 nanoparticles via C2H5OH hydrothermal reduction. Journal of Alloys and Compounds, 468(1-2), L5-L8. https://doi.org/10.1016/j.jallcom.2007.12.086
Prach, M., Ston, V., & Proudfoot, L. (2013). Zinc oxide nanoparticles and monocytes: Impact of size, charge and solubility on activation status. Toxicology and Applied Pharmacology, 266, 19-26. https://doi.org/10.1016/j.taap.2012.10.020
Rakesh, S., Ananda, S., & Gowda, N. M. (2013). Synthesis of chromium (III) oxide nanoparticles by electrochemical method and Mukia maderaspatana plant extract, characterization, KMnO4 decomposition and antibacterial study. Modern Research in Catalysis, 2, 127-135. https://doi.org/10.4236/mrc.2013.24018
Ramesh, C., Mohan Kumar, K., Latha, N., & Ragunathan, V. (2012). Green synthesis of Cr2O3 nanoparticles using Tridax procumbens leaf extract and its antibacterial activity on Escherichia coli. Current Nanoscience, 8(4), 603-607. https://doi.org/10.2174/157341312801784366
Rao, T. M., & Sayari, A. (2009). Ethane dehydrogenation over pore-expanded mesoporous silica-supported chromium oxide: 2. Catalytic properties and nature of active sites. Journal of Molecular Catalysis A: Chemical, 301(1-2), 159-165. https://doi.org/10.1016/j.molcata.2008.12.027
Ravikumar, S., Gokulakrishnan, R., & Boomi, P. (2012). In vitro antibacterial activity of the metal oxide nanoparticles against urinary tract infectious bacterial pathogens. Asian Pacific Journal of Tropical Disease, 2(2), 85-89. https://doi.org/10.1016/S2222-1808(12)60022-X
Satpathy, S., Patra, A., Ahirwar, B., & Delwar Hussain, M. (2018). Antioxidant and anticancer activities of green synthesized silver nanoparticles using aqueous extract of tubers of Pueraria tuberosa. Artificial Cells, Nanomedicine, and Biotechnology, 46(sup3), S71-S85. https://doi.org/10.1080/21691401.2018.1489265
Sone, B. T., Manikandan, E., Gurib-Fakim, A., & Maaza, M. (2016). Single-phase α-Cr2O3 nanoparticles' green synthesis using Callistemon viminalis' red flower extract. Green Chemistry Letters and Reviews, 9(2), 85-90. https://doi.org/10.1080/17518253.2016.1151083
Subramanian, P., Ravichandran, A., Manoharan, V., Muthukaruppan, R., Somasundaram, S., Pandi, B., & You, S. (2019). Synthesis of Oldenlandia umbellata stabilized silver nanoparticles and their antioxidant effect, antibacterial activity, and bio-compatibility using human lung fibroblast cell line WI-38. Process Biochemistry, 86, 196-204. https://doi.org/10.1016/j.procbio.2019.08.002
Suresh, J., Pradheesh, G., Alexramani, V., Sundrarajan, M., & Hong, S. I. (2018). Green synthesis and characterization of zinc oxide nanoparticle using insulin plant (Costus pictus D. Don) and investigation of its antimicrobial as well as anticancer activities. Advances in Natural Sciences: Nanoscience and Nanotechnology, 9(1), 015008. https://doi.org/10.1088/2043-6254/aaa6f1
Tahir, K., Nazir, S., Ahmad, A., Li, B., Khan, A. U., Khan, Z. U. H., … Rahman, A. U. (2017). Facile and green synthesis of phytochemicals capped platinum nanoparticles and in vitro their superior antibacterial activity. Journal of Photochemistry and Photobiology B: Biology, 166, 246-251. https://doi.org/10.1016/j.jphotobiol.2016.12.016
Topwal, M., & Uniyal, S. (2018). Review on important ethno-medicinal plants in Uttarakhand. International Journal of Pure & Applied Bioscience, 6, 455-464.
Ul-Haq, I., Ullah, N., Bibi, G., Kanwal, S., Ahmad, M. S., & Mirza, B. (2012). Antioxidant and cytotoxic activities and phytochemical analysis of Euphorbia wallichii root extract and its fractions. Iranian Journal of Pharmaceutical Research: IJPR, 11(1), 241-249. Retrieved from https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3813110/
Vollath, D., Szabó, D. V., & Willis, J. O. (1996). Magnetic properties of nanocrystalline Cr2O3 synthesized in a microwave plasma. Materials Letters, 29(4-6), 271-279. https://doi.org/10.1016/S0167-577X(96)00158-9
Wang, G., Zhang, L., Deng, J., Dai, H., He, H., & Au, C. T. (2009). Preparation, characterization, and catalytic activity of chromia supported on SBA-15 for the oxidative dehydrogenation of isobutane. Applied Catalysis A: General, 355(1-2), 192-201. https://doi.org/10.1016/j.apcata.2008.12.020
Waters, B., Saxena, G., Wanggui, Y., Kau, D., Wrigley, S., Stokes, R., & Davies, J. (2002). Identifying protein kinase inhibitors using an assay based on inhibition of aerial hyphae formation in Streptomyces. The Journal of Antibiotics, 55(4), 407-416. https://doi.org/10.7164/antibiotics.55.407
Yao, G., Sebisubi, F. M., Voo, L. Y. C., Ho, C. C., Tan, G. T., & Chang, L. C. (2011). Citrinin derivatives from the soil filamentous fungus Penicillium sp. H9318. Journal of the Brazilian Chemical Society, 22(6), 1125-1129. https://doi.org/10.1590/S0103-50532011000600018