Targeted Pathway-based In Vivo Testing Using Thyroperoxidase Inhibition to Evaluate Plasma Thyroxine as a Surrogate Metric of Metamorphic Success in Model Amphibian Xenopus laevis.
Animals
Antithyroid Agents
/ adverse effects
Disease Models, Animal
Enzyme Inhibitors
/ adverse effects
Gene Expression Regulation, Developmental
/ drug effects
Larva
/ drug effects
Metamorphosis, Biological
/ drug effects
Peroxidase
/ drug effects
Thyroid Gland
/ drug effects
Thyroxine
/ blood
Xenopus laevis
/ blood
Xenopus laevis
Bayesian network
adverse outcome pathway
thyroid
thyroperoxidase
Journal
Toxicological sciences : an official journal of the Society of Toxicology
ISSN: 1096-0929
Titre abrégé: Toxicol Sci
Pays: United States
ID NLM: 9805461
Informations de publication
Date de publication:
01 06 2020
01 06 2020
Historique:
pubmed:
17
3
2020
medline:
16
6
2021
entrez:
17
3
2020
Statut:
ppublish
Résumé
Chemical safety evaluation is in the midst of a transition from traditional whole-animal toxicity testing to molecular pathway-based in vitro assays and in silico modeling. However, to facilitate the shift in reliance on apical effects for risk assessment to predictive surrogate metrics having characterized linkages to chemical mechanisms of action, targeted in vivo testing is necessary to establish these predictive relationships. In this study, we demonstrate a means to predict thyroid-related metamorphic success in the model amphibian Xenopus laevis using relevant biochemical measurements during early prometamorphosis. The adverse outcome pathway for thyroperoxidase inhibition leading to altered amphibian metamorphosis was used to inform a pathway-based in vivo study design that generated response-response relationships. These causal relationships were used to develop Bayesian probabilistic network models that mathematically determine conditional dependencies between biochemical nodes and support the predictive capability of the biochemical profiles. Plasma thyroxine concentrations were the most predictive of metamorphic success with improved predictivity when thyroid gland sodium-iodide symporter gene expression levels (a compensatory response) were used in conjunction with plasma thyroxine as an additional regressor. Although thyroid-mediated amphibian metamorphosis has been studied for decades, this is the first time a predictive relationship has been characterized between plasma thyroxine and metamorphic success. Linking these types of biochemical surrogate metrics to apical outcomes is vital to facilitate the transition to the new paradigm of chemical safety assessments.
Identifiants
pubmed: 32176285
pii: 5807621
doi: 10.1093/toxsci/kfaa036
pmc: PMC8010899
mid: NIHMS1607522
doi:
Substances chimiques
Antithyroid Agents
0
Enzyme Inhibitors
0
Peroxidase
EC 1.11.1.7
Thyroxine
Q51BO43MG4
Types de publication
Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
236-250Subventions
Organisme : Intramural EPA
ID : EPA999999
Pays : United States
Informations de copyright
Published by Oxford University Press on behalf of the Society of Toxicology 2020. This work is written by US Government employees and is in the public domain in the US.
Références
Crit Rev Toxicol. 2007 Jan-Feb;37(1-2):117-61
pubmed: 17364707
Emerg Themes Epidemiol. 2013 May 17;10(1):4
pubmed: 23683753
Aquat Toxicol. 2010 Jun 1;98(1):44-50
pubmed: 20153061
Toxicol Sci. 2019 Apr 1;168(2):430-442
pubmed: 30561685
J Endocrinol. 1993 Mar;136(3):361-70
pubmed: 8473826
Bioessays. 1996 May;18(5):391-9
pubmed: 8639162
Environ Health Perspect. 2016 Jul;124(7):910-9
pubmed: 26473631
Gen Comp Endocrinol. 2011 Sep 15;173(3):428-37
pubmed: 21803044
Toxicol In Vitro. 2017 Apr;40:66-78
pubmed: 27979590
Biom J. 2008 Jun;50(3):346-63
pubmed: 18481363
Environ Health Perspect. 2019 Sep;127(9):95001
pubmed: 31487205
Neurotoxicology. 2012 Aug;33(4):842-52
pubmed: 22138353
Biochim Biophys Acta. 1978 Apr 19;540(1):73-82
pubmed: 25093
Genesis. 2017 Jan;55(1-2):
pubmed: 28109053
Thyroid. 2005 Aug;15(8):815-21
pubmed: 16131324
Toxicol Sci. 2005 Oct;87(2):353-64
pubmed: 16002479
Toxicol Sci. 2016 May;151(1):160-80
pubmed: 26884060
Arch Biochem Biophys. 1996 Jun 1;330(1):24-32
pubmed: 8651700
Toxicology. 2013 Oct 4;312:97-107
pubmed: 23959146
Environ Toxicol Chem. 2010 Apr;29(4):869-80
pubmed: 20821516
Toxicol Sci. 2018 Apr 1;162(2):570-581
pubmed: 29228274
Toxicol In Vitro. 2013 Jun;27(4):1320-46
pubmed: 23453986
Thyroid. 2008 Jul;18(7):769-74
pubmed: 18631006
Chem Res Toxicol. 2014 Mar 17;27(3):387-99
pubmed: 24383450
Toxicol Sci. 2011 Dec;124(2):432-45
pubmed: 21964421
Mol Cell Endocrinol. 2008 Oct 10;293(1-2):71-9
pubmed: 18657589
Arch Toxicol. 2020 Mar;94(3):873-885
pubmed: 32065294
Environ Toxicol Chem. 2010 Mar;29(3):730-41
pubmed: 20821501
Toxicol Sci. 2020 Mar 1;174(1):63-78
pubmed: 31808822
Environ Toxicol Chem. 2005 Apr;24(4):926-33
pubmed: 15839568
Mol Cell Endocrinol. 2006 Feb 26;246(1-2):10-20
pubmed: 16413959
Aquat Toxicol. 2013 Jan 15;126:128-36
pubmed: 23178179
Toxicol Sci. 2017 Nov 1;160(1):57-73
pubmed: 28973696
Environ Health Perspect. 2019 Sep;127(9):97009
pubmed: 31566444
Arch Biochem Biophys. 2006 Jan 15;445(2):269-77
pubmed: 16098474
Crit Rev Toxicol. 2005 Oct-Nov;35(8-9):771-81
pubmed: 16417044
Toxicol Sci. 2018 Dec 01;166(2):318-331
pubmed: 30137636
Toxicol Sci. 2015 Aug;146(2):254-64
pubmed: 25953703
Toxicol Sci. 2020 Feb 1;173(2):280-292
pubmed: 31697382
Dev Biol. 2007 Jun 1;306(1):20-33
pubmed: 17449026
Reprod Toxicol. 2016 Oct;65:402-413
pubmed: 27589887
Toxicol Appl Pharmacol. 2008 Oct 1;232(1):1-13
pubmed: 18573268
Toxicol In Vitro. 2019 Jun;57:39-47
pubmed: 30738889
Environ Sci Technol. 2018 May 1;52(9):5417-5426
pubmed: 29611697