Why the -omic future of Apicomplexa should include gregarines.
Apicomplexa
Evolutionary history
Genomics
Parasitology
Protozoa
Journal
Biology of the cell
ISSN: 1768-322X
Titre abrégé: Biol Cell
Pays: England
ID NLM: 8108529
Informations de publication
Date de publication:
Jun 2020
Jun 2020
Historique:
received:
10
01
2020
revised:
03
03
2020
accepted:
10
03
2020
pubmed:
17
3
2020
medline:
30
12
2020
entrez:
17
3
2020
Statut:
ppublish
Résumé
Gregarines, a polyphyletic group of apicomplexan parasites infecting mostly non-vertebrates hosts, remains poorly known at taxonomic, phylogenetic and genomic levels. However, it represents an essential group for understanding evolutionary history and adaptive capacities of apicomplexan parasites to the remarkable diversity of their hosts. Because they have a mostly extracellular lifestyle, gregarines have developed other cellular developmental forms and host-parasite interactions, compared with their much better studied apicomplexan cousins, intracellular parasites of vertebrates (Hemosporidia, Coccidia, Cryptosporidia). This review highlights the promises offered by the molecular exploration of gregarines, that have been until now left on the side of the road of the comparative -omic exploration of apicomplexan parasites. Elucidating molecular bases for both their ultrastructural, functional and behavioural similarities and differences, compared with those of the typical apicomplexan models, is expected to provide entirely novel clues on the adaptive capacities developed by Apicomplexa over evolution. A challenge remains to identify which gregarines should be explored in priority, as recent metadata from open and host-associated environments have confirmed how underestimated is our current view on true gregarine biodiversity. It is now time to turn to gregarines to widen the currently highly skewed view we have of adaptive mechanisms developed by Apicomplexa.
Identifiants
pubmed: 32176937
doi: 10.1111/boc.202000006
doi:
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
173-185Subventions
Organisme : Agence Nationale de la Recherche
ID : LabEx ANR-10-LABX-0003-BCDiv
Organisme : Muséum National d'Histoire Naturelle
ID : ATM-Emergence
Organisme : Centre National de la Recherche Scientifique
ID : PhD fellowship to JB
Organisme : Centre National de la Recherche Scientifique
ID : 2018-2021
Informations de copyright
© 2020 Société Française des Microscopies and Société de Biologie Cellulaire de France. Published by John Wiley & Sons Ltd.
Références
Adl, S.M., Bass, D., Lane, C.E., Lukes, J., Schoch, C.L., Smirnov, A., Agatha, S., Berney, C., Brown, M.W., Burki, F., Cardenas, P., Cepicka, I., Chistyakova, L., Del Campo, J., Dunthorn, M., Edvardsen, B., Eglit, Y., Guillou, L., Hampl, V., Heiss, A.A., Hoppenrath, M., James, T.Y., Karpov, S., Kim, E., Kolisko, M., Kudryavtsev, A., Lahr, D.J.G., Lara, E., Le Gall, L., Lynn, D.H., Mann, D.G., Massana, I.M.R., Mitchell, E.A.D., Morrow, C., Park, J.S., Pawlowski, J.W., Powell, M.J., Richter, D.J., Rueckert, S., Shadwick, L., Shimano, S., Spiegel, F.W., Torruella, I.C.G., Youssef, N., Zlatogursky, V. and Zhang, Q. (2018) Revisions to the classification, nomenclature, and diversity of eukaryotes. J. Eukaryot. Microbiol. 66, 4-119
Aly, A.S., Vaughan, A.M. and Kappe, S.H. (2009) Malaria parasite development in the mosquito and infection of the mammalian host. Annu. Rev. Microbiol. 63, 195-221
Aurrecoechea, C., Barreto, A., Basenko, E.Y., Brestelli, J., Brunk, B.P., Cade, S., Crouch, K., Doherty, R., Falke, D., Fischer, S., Gajria, B., Harb, O.S., Heiges, M., Hertz-Fowler, C., Hu, S., Iodice, J., Kissinger, J.C., Lawrence, C., Li, W., Pinney, D.F., Pulman, J.A., Roos, D.S., Shanmugasundram, A., Silva-Franco, F., Steinbiss, S., Stoeckert C.J., Jr., Spruill, D., Wang, H., Warrenfeltz, S. and Zheng, J. (2017) EuPathDB: the eukaryotic pathogen genomics database resource. Nucleic Acids Res. 45, D581-D591
Bahrndorff, S., Alemu, T., Alemneh, T. and Lund Nielsen, J. (2016) The microbiome of animals: implications for conservation biology. Int. J. Genomics 2016, 5304028
Barta, J.R. and Thompson, R.C. (2006) What is Cryptosporidium? Reappraising its biology and phylogenetic affinities. Trends Parasitol. 22, 463-468
Bartosova-Sojkova, P., Oppenheim, R.D., Soldati-Favre, D. and Lukes, J. (2015) Epicellular apicomplexans: parasites “on the way in”. PLoS Pathog. 11, e1005080
Boucher, L.E. and Bosch, J. (2015) The apicomplexan glideosome and adhesins - structures and function. J. Struct. Biol. 190, 93-114
Bouzid, M., Hunter, P.R., Chalmers, R.M. and Tyler, K.M. (2013) Cryptosporidium pathogenicity and virulence. Clin. Microbiol. Rev. 26, 115-134
Buchmann, K. (2014) Evolution of innate immunity: clues from invertebrates via fish to mammals. Front. Immunol. 5, 459
Canning, E.U. (1956) A new eugregarine of locusts, Gregarina garnhami n.sp., parasitic in Schistocerca gregaria Forsk. J. Protozool. 3, 50-62
Cavalier-Smith, T. (2014) Gregarine site-heterogeneous 18S rDNA trees, revision of gregarine higher classification, and the evolutionary diversification of Sporozoa. Eur. J. Protistol. 50, 472-495
Clopton, R.E. (2009) Phylogenetic relationships, evolution, and systematic revision of the septate gregarines (Apicomplexa:Eugregarinorida:Septatorina). Comp. Parasitol. 76, 167-190
Clopton, R.E., Janovy J., Jr. and Percival, T.J. (1992) Host stadium specificity in the gregarine assemblage parasitizing Tenebrio molitor. J. Parasitol. 78, 334-337
Counihan, N.A., Kalanon, M., Coppel, R.L. and de Koning-Ward, T.F. (2013) Plasmodium rhoptry proteins: why order is important. Trends Parasitol. 29, 228-236
de Vargas, C., Audic, S., Henry, N., Decelle, J., Mahé, F., Logares, R., Lara, E., Berney, C., Le Bescot, N., Probert, I., Carmichael, M., Poulain, J., Romac, S., Colin, S., Aury, J.M., Bittner, L., Chaffron, S., Dunthorn, M., Engelen, S., Flegontova, O., Guidi, L., Horak, A., Jaillon, O., Lima-Mendez, G., Lukes, J., Malviya, S., Morard, R., Mulot, M., Scalco, E., Siano, R., Vincent, F., Zingone, A., Dimier, C., Picheral, M., Searson, S., Kandels-Lewis, S., Acinas, S.G., Bork, P., Bowler, C., Gorsky, G., Grimsley, N., Hingamp, P., Iudicone, D., Not, F., Ogata, H., Pesant, S., Raes, J., Sieracki, M.E., Speich, S., Stemmann, L., Sunagawa, S., Weissenbach, J., Wincker, P. and Karsenti, E. (2015) Ocean plankton. Eukaryotic plankton diversity in the sunlit ocean. Science 348, 1261605
Del Campo, J., Heger, T.J., Rodriguez-Martinez, R., Worden, A.Z., Richards, T.A., Massana, R. and Keeling, P.J. (2019) Assessing the diversity and distribution of apicomplexans in host and free-living environments using high-throughput amplicon data and a phylogenetically informed reference framework. Front. Microbiol. 10, 2373
Desportes, I. and Schrével, J. (2013) Treatise on zoology-Anatomy, taxonomy, biology. The Gregarines: The early branching Apicomplexa (Volumes 1 and 2). Leiden, The Netherlands; Boston, MA: Brill. 791 pp
Diakin, A., Paskerova, G.G., Simdyanov, T.G., Aleoshin, V.V. and Valigurova, A. (2016) Morphology and molecular phylogeny of coelomic gregarines (Apicomplexa) with different types of motility: urospora ovalis and U. travisiae from the Polychaete Travisia forbesii. Protist 167, 279-301
Diakin, A., Wakeman, K.C. and Valigurova, A. (2017) Description of Ganymedes yurii sp. n. (Ganymedidae), a new gregarine species from the antarctic amphipod gondogeneia sp. (Crustacea). J. Eukaryot. Microbiol. 64, 56-66
Frenal, K., Dubremetz, J.F., Lebrun, M. and Soldati-Favre, D. (2017) Gliding motility powers invasion and egress in Apicomplexa. Nat. Rev. Microbiol. 15, 645-660
Füssy, Z. and Oborník, M. (2017) Reductive evolution of apicomplexan parasites from phototrophic ancestors. In Evolutionary Biology: Self/Nonself Evolution, Species and Complex Traits Evolution, Methods and Concepts. P. Pontarotti, editor. Cham: Springer International Publishing. 217-236
Gawad, C., Koh, W. and Quake, S.R. (2016) Single-cell genome sequencing: current state of the science. Nat. Rev. Genet. 17, 175-188
Gentekaki, E., Kolisko, M., Boscaro, V., Bright, K.J., Dini, F., Di Giuseppe, G., Gong, Y., Miceli, C., Modeo, L., Molestina, R.E., Petroni, G., Pucciarelli, S., Roger, A.J., Strom, S.L. and Lynn, D.H. (2014) Large-scale phylogenomic analysis reveals the phylogenetic position of the problematic taxon Protocruzia and unravels the deep phylogenetic affinities of the ciliate lineages. Mol. Phylogenet Evol. 78, 36-42
Gubbels, M.J. and Duraisingh, M.T. (2012) Evolution of apicomplexan secretory organelles. Int. J. Parasitol. 42, 1071-1081
Hakimi, M.A., Olias, P. and Sibley, L.D. (2017) Toxoplasma effectors targeting host signaling and transcription. Clin. Microbiol. Rev. 30, 615-645
Janouskovec, J., Paskerova, G.G., Miroliubova, T.S., Mikhailov, K.V., Birley, T., Aleoshin, V.V. and Simdyanov, T.G. (2019) Apicomplexan-like parasites are polyphyletic and widely but selectively dependent on cryptic plastid organelles. eLife 8, e49662
Janouskovec, J., Tikhonenkov, D.V., Burki, F., Howe, A.T., Kolisko, M., Mylnikov, A.P. and Keeling, P.J. (2015) Factors mediating plastid dependency and the origins of parasitism in apicomplexans and their close relatives. Proc. Natl. Acad. Sci. U.S.A. 112, 10200-10207
Kuriyama, R., Besse, C., Geze, M., Omoto, C.K. and Schrével, J. (2005) Dynamic organization of microtubules and microtubule-organizing centers during the sexual phase of a parasitic protozoan, Lecudina tuzetae (Gregarine, Apicomplexa). Cell Motil. Cytoskeleton 62, 195-209
Kwong, W.K., Del Campo, J., Mathur, V., Vermeij, M.J.A. and Keeling, P.J. (2019) A widespread coral-infecting apicomplexan with chlorophyll biosynthesis genes. Nature 568, 103-107
Mahé, F., de Vargas, C., Bass, D., Czech, L., Stamatakis, A., Lara, E., Singer, D., Mayor, J., Bunge, J., Sernaker, S., Siemensmeyer, T., Trautmann, I., Romac, S., Berney, C., Kozlov, A., Mitchell, E.A.D., Seppey, C.V.W., Egge, E., Lentendu, G., Wirth, R., Trueba, G. and Dunthorn, M. (2017) Parasites dominate hyperdiverse soil protist communities in Neotropical rainforests. Nat. Ecol. Evol. 1, 91
Mathur, V., Kolisko, M., Hehenberger, E., Irwin, N.A.T., Leander, B.S., Kristmundsson, A., Freeman, M.A. and Keeling, P.J. (2019) Multiple independent origins of apicomplexan-like parasites. Curr. Biol. 29, 2936-2941 e2935
Morrissette, N.S. and Sibley, L.D. (2002) Cytoskeleton of apicomplexan parasites. Microbiol. Mol. Biol. Rev. 66, 21-38; table of contents
Mueller, C., Graindorge, A. and Soldati-Favre, D. (2017) Functions of myosin motors tailored for parasitism. Curr. Opin. Microbiol. 40, 113-122
Omoto, C.K., Toso, M., Tang, K. and Sibley, L.D. (2004) Expressed sequence tag (EST) analysis of Gregarine gametocyst development. Int. J. Parasitol. 34, 1265-1271
Portman, N. and Slapeta, J. (2014) The flagellar contribution to the apical complex: a new tool for the eukaryotic Swiss Army knife? Trends Parasitol. 30, 58-64
Prensier, G., Dubremetz, J.F. and Schrével, J. (2008) The unique adaptation of the life cycle of the coelomic gregarine Diplauxis hatti to its host Perinereis cultrifera (Annelida, Polychaeta): an experimental and ultrastructural study. J. Eukaryot. Microbiol. 55, 541-553
Robert-Gangneux, F. and Darde, M.L. (2012) Epidemiology of and diagnostic strategies for toxoplasmosis. Clin. Microbiol. Rev. 25, 264-296
Rueckert, S., Betts, E.L. and Tsaousis, A.D. (2019a) The symbiotic spectrum: where do the gregarines fit? Trends Parasitol. 35, 687-694
Rueckert, S. and Horak, A. (2017) Archigregarines of the English Channel revisited: new molecular data on Selenidium species including early described and new species and the uncertainties of phylogenetic relationships. PLoS One 12, e0187430
Rueckert, S., Pipaliya, S.V. and Dacks, J.B. (2019b) Evolution: parallel paths to parasitism in the Apicomplexa. Curr. Biol. 29, R836-R839
Schrével, J. and Desportes, I. (2015) Gregarines. In Encyclopedia of Parasitology. H. Mehlhorn, editor. Berlin Heidelberg: Springer-Verlag
Schrével, J., Valigurova, A., Prensier, G., Chambouvet, A., Florent, I. and Guillou, L. (2016) Ultrastructure of Selenidium pendula, the type species of archigregarines, and phylogenetic relations to other marine Apicomplexa. Protist 167, 339-368
Sibbald, S.J. and Archibald, J.M. (2017) More protist genomes needed. Nat. Ecol. Evol. 1, 145
Simdyanov, T.G., Guillou, L., Diakin, A.Y., Mikhailov, K.V., Schrével, J. and Aleoshin, V.V. (2017) A new view on the morphology and phylogeny of eugregarines suggested by the evidence from the gregarine Ancora sagittata (Leuckart, 1860) Labbe, 1899 (Apicomplexa: Eugregarinida). PeerJ. 5, e3354
Simdyanov, T.G. and Kuvardina, O.N. (2007) Fine structure and putative feeding mechanism of the archigregarine Selenidium orientale (Apicomplexa: Gregarinomorpha). Eur. J. Protistol. 43, 17-25
Simdyanov, T.G., Paskerova, G.G., Valigurova, A., Diakin, A., Kovacikova, M., Schrével, J., Guillou, L., Dobrovolskij, A.A. and Aleoshin, V.V. (2018) First ultrastructural and molecular phylogenetic evidence from the blastogregarines, an early branching lineage of plesiomorphic Apicomplexa. Protist 169, 697-726
Tardieux, I. and Baum, J. (2016) Reassessing the mechanics of parasite motility and host-cell invasion. J. Cell Biol. 214, 507-515
Templeton, T.J., Enomoto, S., Chen, W.J., Huang, C.G., Lancto, C.A., Abrahamsen, M.S. and Zhu, G. (2010) A genome-sequence survey for Ascogregarina taiwanensis supports evolutionary affiliation but metabolic diversity between a Gregarine and Cryptosporidium. Mol. Biol. Evol. 27, 235-248
Valigurova, A., Hofmannova, L., Koudela, B. and Vavra, J. (2007) An ultrastructural comparison of the attachment sites between Gregarina steini and Cryptosporidium muris. J. Eukaryot. Microbiol. 54, 495-510
Valigurova, A. and Koudela, B. (2008) Morphological analysis of the cellular interactions between the eugregarine Gregarina garnhami (Apicomplexa) and the epithelium of its host, the desert locust Schistocerca gregaria. Eur. J. Protistol. 44, 197-207
Valigurova, A., Vaskovicova, N., Musilova, N. and Schrével, J. (2013) The enigma of eugregarine epicytic folds: where gliding motility originates? Front. Zool. 10, 57
Woo, Y.H., Ansari, H., Otto, T.D., Klinger, C.M., Kolisko, M., Michalek, J., Saxena, A., Shanmugam, D., Tayyrov, A., Veluchamy, A., Ali, S., Bernal, A., del Campo, J., Cihlar, J., Flegontov, P., Gornik, S.G., Hajduskova, E., Horak, A., Janouskovec, J., Katris, N.J., Mast, F.D., Miranda-Saavedra, D., Mourier, T., Naeem, R., Nair, M., Panigrahi, A.K., Rawlings, N.D., Padron-Regalado, E., Ramaprasad, A., Samad, N., Tomcala, A., Wilkes, J., Neafsey, D.E., Doerig, C., Bowler, C., Keeling, P.J., Roos, D.S., Dacks, J.B., Templeton, T.J., Waller, R.F., Lukes, J., Obornik, M. and Pain, A. (2015) Chromerid genomes reveal the evolutionary path from photosynthetic algae to obligate intracellular parasites. eLife 4, e06974