A conserved motif in three viral movement proteins from different genera is required for host factor recruitment and cell-to-cell movement.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
16 03 2020
Historique:
received: 25 10 2019
accepted: 02 03 2020
entrez: 18 3 2020
pubmed: 18 3 2020
medline: 15 12 2020
Statut: epublish

Résumé

Due to their minimal genomes, plant viruses are forced to hijack specific cellular pathways to ensure host colonization, a condition that most frequently involves physical interaction between viral and host proteins. Among putative viral interactors are the movement proteins, responsible for plasmodesma gating and genome binding during viral transport. Two of them, DGBp1 and DGBp2, are required for alpha-, beta- and gammacarmovirus cell-to-cell movement, but the number of DGBp-host interactors identified at present is limited. By using two different approaches, yeast two-hybrid and bimolecular fluorescence complementation assays, we found three Arabidopsis factors, eIF3g1, RPP3A and WRKY36, interacting with DGBp1s from each genus mentioned above. eIF3g1 and RPP3A are mainly involved in protein translation initiation and elongation phases, respectively, while WRKY36 belongs to WRKY transcription factor family, important regulators of many defence responses. These host proteins are not expected to be associated with viral movement, but knocking out WRKY36 or silencing either RPP3A or eIF3g1 negatively affected Arabidopsis infection by Turnip crinkle virus. A highly conserved FNF motif at DGBp1 C-terminus was required for protein-protein interaction and cell-to-cell movement, suggesting an important biological role.

Identifiants

pubmed: 32179855
doi: 10.1038/s41598-020-61741-5
pii: 10.1038/s41598-020-61741-5
pmc: PMC7075923
doi:

Substances chimiques

Arabidopsis Proteins 0
Plant Viral Movement Proteins 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

4758

Références

Sicard, A., Michalakis, Y., Gutiérrez, S. & Blanc, S. The strange lifestyle of multipartite viruses. PLoS Pathog. 12, e1005819–e1005819 (2016).
pubmed: 27812219 pmcid: 5094692 doi: 10.1371/journal.ppat.1005819
Pita, J. S. & Roossinck, M. J. Virus populations, mutation rates and frequencies. In Plant Virus Evol. (ed. Roossinck, M. J.) 109–121 https://doi.org/10.1007/978-3-540-75763-4_6 (Springer Berlin Heidelberg, 2008).
doi: 10.1007/978-3-540-75763-4_6
Ivanov, K. I. & Makinen, K. Coat proteins, host factors and plant viral replication. Curr. Opin. Virol. 2, 712–718 (2012).
pubmed: 23122854 doi: 10.1016/j.coviro.2012.10.001
Wang, A. Dissecting the molecular network of virus-plant interactions: the complex roles of host factors. Annu. Rev. Phytopathol. 53, 45–66 (2015).
pubmed: 25938276 doi: 10.1146/annurev-phyto-080614-120001
García, J. A. & Pallás, V. Viral factors involved in plant pathogenesis. Curr. Opin. Virol. 10, 21–30 (2015).
doi: 10.1016/j.coviro.2015.01.001
Garcia-Ruiz, H. Host factors against plant viruses. Mol. Plant Pathol. 20, 1588–1601 (2019).
pubmed: 31286679 pmcid: 6804339 doi: 10.1111/mpp.12851
Hull, R. Induction of disease 1: virus movement through the plant and effects on plant metabolism. In Matthews’ Plant Virology (ed. Hull, R.) 373–436 (Academic Press, 2002).
Navarro, J. A. & Pallas, V. An update on the intracellular and intercellular trafficking of carmoviruses. Front. Plant. Sci. 8, 1801 (2017).
pubmed: 29093729 pmcid: 5651262 doi: 10.3389/fpls.2017.01801
Azevedo, J. et al. Argonaute quenching and global changes in Dicer homeostasis caused by a pathogen-encoded GW repeat protein. Genes Dev. 24, 904–915 (2010).
pubmed: 20439431 pmcid: 2861190 doi: 10.1101/gad.1908710
Zhang, X., Zhang, X., Singh, J., Li, D. & Qu, F. Temperature-dependent survival of Turnip crinkle virus-infected arabidopsis plants relies on an RNA silencing-based defense that requires dcl2, AGO2, and HEN1. J. Virol. 86, 6847–6854 (2012).
pubmed: 22496240 pmcid: 3393596 doi: 10.1128/JVI.00497-12
Donze, T., Qu, F., Twigg, P. & Morris, T. J. Turnip crinkle virus coat protein inhibits the basal immune response to virus invasion in Arabidopsis by binding to the NAC transcription factor TIP. Virology 449, 207–214 (2014).
pubmed: 24418554 doi: 10.1016/j.virol.2013.11.018
Lin, B. & Heaton, L. A. An Arabidopsis thaliana protein interacts with a movement protein of Turnip crinkle virus in yeast cells and in vitro. J. Gen. Virol. 82, 1245–1251 (2001).
pubmed: 11297700 doi: 10.1099/0022-1317-82-5-1245
Navarro, J. A., Sanchez-Navarro, J. A. & Pallas, V. Key checkpoints in the movement of plant viruses through the host. Adv. Virus Res. 104, 1–64 (2019).
pubmed: 31439146 doi: 10.1016/bs.aivir.2019.05.001
Navarro, J. A. et al. RNA-binding properties and membrane insertion of Melon necrotic spot virus (MNSV) double gene block movement proteins. Virology 356, 57–67 (2006).
pubmed: 16950492 doi: 10.1016/j.virol.2006.07.040
Serra-Soriano, M., Pallás, V. & Navarro, J. A. A model for transport of a viral membrane protein through the early secretory pathway: minimal sequence and endoplasmic reticulum lateral mobility requirements. Plant J. 77, 863–879 (2014).
pubmed: 24438546 doi: 10.1111/tpj.12435
Genoves, A., Navarro, J. A. & Pallas, V. Functional analysis of the five melon necrotic spot virus genome-encoded proteins. J. Gen. Virol. 87, 2371–2380 (2006).
pubmed: 16847133 doi: 10.1099/vir.0.81793-0
Li, W. Z., Qu, F. & Morris, T. J. Cell-to-cell movement of turnip crinkle virus is controlled by two small open reading frames that function in trans. Virology 244, 405–416 (1998).
pubmed: 9601509 doi: 10.1006/viro.1998.9125
Martinez-Turino, S. & Hernandez, C. A membrane-associated movement protein of Pelargonium flower break virus shows RNA-binding activity and contains a biologically relevant leucine zipper-like motif. Virology 413, 310–319 (2011).
pubmed: 21444100 doi: 10.1016/j.virol.2011.03.001
Molnár, A., Havelda, Z., Dalmay, T., Szutorisz, H. & Burgyán, J. Complete nucleotide sequence of tobacco necrosis virus strain D(H) and genes required for RNA replication and virus movement. J. Gen. Virol. 78(6), 1235–1239 (1997).
pubmed: 9191913 doi: 10.1099/0022-1317-78-6-1235
Marcos, J. F., Vilar, M., Pérez-Payá, E. & Pallás, V. In vivo detection, RNA-binding properties and characterization of the RNA-binding domain of the p7 putative movement protein from Carnation mottle carmovirus (CarMV). Virology 255, 354–365 (1999).
pubmed: 10069961 doi: 10.1006/viro.1998.9596
Vilar, M., Esteve, V., Pallás, V., Marcos, J. F. & Pérez-Payá, E. Structural properties of carnation mottle virus p7 movement protein and its RNA-binding domain. J. Biol. Chem. 276, 18122–18129 (2001).
pubmed: 11279121 doi: 10.1074/jbc.M100706200
Vilar, M., Saurí, A., Marcos, J. F., Mingarro, I. & Pérez‐Payá, E. Transient structural ordering of the RNA‐binding domain of carnation mottle virus p7 movement protein modulates nucleic acid binding. Chembiochem 6, 1391–1396 (2005).
pubmed: 16003802 doi: 10.1002/cbic.200400451
Genoves, A., Navarro, J. A. & Pallas, V. A self-interacting carmovirus movement protein plays a role in binding of viral RNA during the cell-to-cell movement and shows an actin cytoskeleton dependent location in cell periphery. Virology 395, 133–142 (2009).
pubmed: 19796783 doi: 10.1016/j.virol.2009.08.042
Garcia-Castillo, S., Sanchez-Pina, M. A. & Pallas, V. Spatio-temporal analysis of the RNAs, coat and movement (p7) proteins of Carnation mottle virus in Chenopodium quinoa plants. J. Gen. Virol. 84, 745–749 (2003).
pubmed: 12604827 doi: 10.1099/vir.0.18715-0
Cohen, Y., Qu, F., Gisel, A., Morris, T. J. & Zambryski, P. C. Nuclear localization of turnip crinkle virus movement protein p8. Virology 273, 276–285 (2000).
pubmed: 10915598 doi: 10.1006/viro.2000.0440
Martinez-Gil, L., Sauri, A., Vilar, M., Pallas, V. & Mingarro, I. Membrane insertion and topology of the p7B movement protein of Melon Necrotic Spot Virus (MNSV). Virology 367, 348–357 (2007).
pubmed: 17610929 doi: 10.1016/j.virol.2007.06.006
Sauri, A., Saksena, S., Salgado, J., Johnson, A. E. & Mingarro, I. Double-spanning plant viral movement protein integration into the endoplasmic reticulum membrane is signal recognition particle-dependent, translocon-mediated, and concerted. J. Biol. Chem. 280, 25907–25912 (2005).
pubmed: 15888454 doi: 10.1074/jbc.M412476200
Genoves, A., Navarro, J. A. & Pallas, V. The intra- and intercellular movement of Melon necrotic spot virus (MNSV) depends on an active secretory pathway. Mol. Plant-Microbe Interact. 23, 263–272 (2010).
pubmed: 20121448 doi: 10.1094/MPMI-23-3-0263
Aparicio, F. & Pallás, V. The coat protein of Alfalfa mosaic virus interacts and interferes with the transcriptional activity of the bHLH transcription factor ILR3 promoting salicylic acid-dependent defence signalling response. Mol. Plant Pathol. 18(2), 173–186 (2017).
pubmed: 26929142 doi: 10.1111/mpp.12388
Yang, Y. et al. UVR8 interacts with WRKY36 to regulate HY5 transcription and hypocotyl elongation in Arabidopsis. Nat. Plants 4, 98–107 (2018).
pubmed: 29379156 doi: 10.1038/s41477-017-0099-0
Cutler, S. R., Ehrhardt, D. W., Griffitts, J. S. & Somerville, C. R. Random GFP::cDNA fusions enable visualization of subcellular structures in cells of Arabidopsis at a high frequency. Proc. Natl. Acad. Sci. USA 97, 3718–3723 (2000).
pubmed: 10737809 doi: 10.1073/pnas.97.7.3718
La Cour, T. et al. Analysis and prediction of leucine-rich nuclear export signals. Protein Eng. Des. Sel. 17, 527–536 (2004).
doi: 10.1093/protein/gzh062
Prieto, G., Fullaondo, A. & Rodriguez, J. A. Prediction of nuclear export signals using weighted regular expressions (Wregex). Bioinformatics 30, 1220–1227 (2014).
pubmed: 24413524 doi: 10.1093/bioinformatics/btu016
Wobbe, K. K., Akgoz, M., Dempsey, D. A. & Klessig, D. F. A single amino acid change in turnip crinkle virus movement protein p8 affects RNA binding and virulence on Arabidopsis thaliana. J. Virol. 72, 6247–6250 (1998).
pubmed: 9621099 pmcid: 110452 doi: 10.1128/JVI.72.7.6247-6250.1998
Akgoz, M., Nguyen, Q. N., Talmadge, A. E., Drainville, K. E. & Wobbe, K. K. Mutational analysis of Turnip crinkle virus movement protein p8. Mol. Plant Pathol. 2(1), 37–48, https://doi.org/10.1046/j.1364-3703.2001.00048.x (2001).
doi: 10.1046/j.1364-3703.2001.00048.x pubmed: 20572990
Ahlfors, R. et al. Arabidopsis RADICAL-INDUCED CELL DEATH1 belongs to the WWE protein-protein interaction domain protein family and modulates abscisic acid, ethylene, and methyl jasmonate responses. Plant Cell 16, 1925–1937 (2004).
pubmed: 15208394 pmcid: 514171 doi: 10.1105/tpc.021832
Aravind, L. The WWE domain: a common interaction module in protein ubiquitination and ADP ribosylation. Trends Biochem. Sci. 26, 273–275 (2001).
pubmed: 11343911 doi: 10.1016/S0968-0004(01)01787-X
Meyer, E. A., Castellano, R. K. & Diederich, F. Interactions with aromatic rings in chemical and biological recognition. Angew. Chem. Int. Ed. Engl. 42, 1210–1250 (2003).
pubmed: 12645054 doi: 10.1002/anie.200390319
Profit, A. A., Felsen, V., Chinwong, J., Mojica, E. R. & Desamero, R. Z. Evidence of pi-stacking interactions in the self-assembly of hIAPP(22-29). Proteins 81, 690–703 (2013).
pubmed: 23229921 pmcid: 3594381 doi: 10.1002/prot.24229
Amari, K., Vazquez, F. & Heinlein, M. Manipulation of plant host susceptibility: an emerging role for viral movement proteins? Front. Plant. Sci. 3, 10 (2012).
pubmed: 22639637 pmcid: 3355624 doi: 10.3389/fpls.2012.00010
Morozov, S. Y. & Solovyev, A. G. Did silencing suppression counter-defensive strategy contribute to origin and evolution of the triple gene block coding for plant virus movement proteins? Front. Plant. Sci. 3, 136 (2012).
pubmed: 22783263 pmcid: 3390553 doi: 10.3389/fpls.2012.00136
Levy, A., Zheng, J. Y. & Lazarowitz, S. G. The tobamovirus turnip vein clearing virus 30-kilodalton movement protein localizes to novel nuclear filaments to enhance virus infection. J. Virol. 87, 6428–6440 (2013).
pubmed: 23536678 pmcid: 3648121 doi: 10.1128/JVI.03390-12
Gonzalo, P. & Reboud, J. P. The puzzling lateral flexible stalk of the ribosome. Biol. Cell. 95, 179–193 (2003).
pubmed: 12867082 doi: 10.1016/S0248-4900(03)00034-0
Szick, K., Springer, M. & Bailey-Serres, J. Evolutionary analyses of the 12-kDa acidic ribosomal P-proteins reveal a distinct protein of higher plant ribosomes. Proc. Natl. Acad. Sci. USA 95, 2378–2383 (1998).
pubmed: 9482893 doi: 10.1073/pnas.95.5.2378
Hafren, A., Eskelin, K. & Makinen, K. Ribosomal protein P0 promotes Potato virus A infection and functions in viral translation together with VPg and eIF(iso)4E. J. Virol. 87, 4302–4312 (2013).
pubmed: 23365448 pmcid: 3624370 doi: 10.1128/JVI.03198-12
Sato, H. et al. Measles virus N protein inhibits host translation by binding to eIF3-p40. J. Virol. 81, 11569–11576 (2007).
pubmed: 17686838 pmcid: 2168761 doi: 10.1128/JVI.00570-07
Bhardwaj, U., Powell, P. & Goss, D. J. Eukaryotic initiation factor (eIF) 3 mediates barley yellow dwarf viral mRNA 3′–5′ UTR interactions and 40S ribosomal subunit binding to facilitate cap-independent translation. Nucleic Acids Res. 47, 6225–6235
Park, H. S., Himmelbach, A., Browning, K. S., Hohn, T. & Ryabova, L. A. A plant viral ‘reinitiation’ factor interacts with the host translational machinery. Cell 106, 723–733 (2001).
pubmed: 11572778 doi: 10.1016/S0092-8674(01)00487-1
Thiébeauld, O., Pooggin, M. & Ryabova, L. Alternative translation strategies in plant viruses. Plant Viruses 1, 1–20 (2007).
Bureau, M. et al. P6 protein of Cauliflower mosaic virus, a translation reinitiator, interacts with ribosomal protein L13 from Arabidopsis thaliana. J. Gen. Virol. 85, 3765–3775 (2004).
pubmed: 15557250 doi: 10.1099/vir.0.80242-0
Ryabova, L. A., Pooggin, M. M. & Hohn, T. Translation reinitiation and leaky scanning in plant viruses. Virus Res. 119, 52–62 (2006).
pubmed: 16325949 doi: 10.1016/j.virusres.2005.10.017
Chen, L., Zhang, L., Li, D., Wang, F. & Yu, D. WRKY8 transcription factor functions in the TMV-cg defense response by mediating both abscisic acid and ethylene signaling in Arabidopsis. Proc. Natl. Acad. Sci. USA 110, E1963–E1971 (2013).
pubmed: 23650359 doi: 10.1073/pnas.1221347110
Huh, S. U., Choi, L. M., Lee, G. J., Kim, Y. J. & Paek, K. H. Capsicum annuum WRKY transcription factor d (CaWRKYd) regulates hypersensitive response and defense response upon Tobacco mosaic virus infection. Plant Sci. 197, 50–58 (2012).
pubmed: 23116671 doi: 10.1016/j.plantsci.2012.08.013
Menke, F. L. et al. Tobacco transcription factor WRKY1 is phosphorylated by the MAP kinase SIPK and mediates HR-like cell death in tobacco. Mol. Plant Microbe Interact. 18, 1027–1034 (2005).
pubmed: 16255241 doi: 10.1094/MPMI-18-1027
Park, H. S. & Kim, K. H. Virus-induced silencing of the WRKY1 transcription factor that interacts with the SL1 structure of Potato virus X leads to higher viral RNA accumulation and severe necrotic symptoms. Plant Pathol. J. 28, 40–48 (2012).
doi: 10.5423/PPJ.OA.11.2011.0226
Gao, R., Liu, P., Yong, Y. & Wong, S. M. Genome-wide transcriptomic analysis reveals correlation between higher WRKY61 expression and reduced symptom severity in Turnip crinkle virus infected Arabidopsis thaliana. Sci. Rep. 6, 24604 (2016).
pubmed: 27086702 pmcid: 4834565 doi: 10.1038/srep24604
Zou, L. et al. Transcription factor WRKY30 mediates resistance to Cucumber mosaic virus in Arabidopsis. Biochem. Biophys. Res. Commun. 517, 118–124 (2019).
pubmed: 31311650 doi: 10.1016/j.bbrc.2019.07.030
Huang, Y. et al. Members of WRKY Group III transcription factors are important in TYLCV defense signaling pathway in tomato (Solanum lycopersicum). BMC Genomics 17, 788 (2016).
pubmed: 27717312 pmcid: 5055730 doi: 10.1186/s12864-016-3123-2
Besseau, S., Li, J. & Palva, E. T. WRKY54 and WRKY70 co-operate as negative regulators of leaf senescence in Arabidopsis thaliana. J. Exp. Bot. 63, 2667–2679 (2012).
pubmed: 22268143 pmcid: 3346227 doi: 10.1093/jxb/err450
Yan, L. et al. Auto- and cross-repression of three arabidopsis WRKY transcription factors WRKY18, WRKY40, and WRKY60 negatively involved in ABA signaling. J. Plant Growth Regul. 32, 399–416 (2013).
doi: 10.1007/s00344-012-9310-8
Xu, E., Vaahtera, L. & Brosché, M. Roles of defense hormones in the regulation of ozone-induced changes in gene expression and cell death. Mol. Plant 8, 1776–1794 (2015).
pubmed: 26348016 doi: 10.1016/j.molp.2015.08.008
Li, S.-W., Leng, Y. & Shi, R.-F. Transcriptomic profiling provides molecular insights into hydrogen peroxide-induced adventitious rooting in mung bean seedlings. BMC Genomics 18, 188 (2017).
pubmed: 28212614 pmcid: 5316208 doi: 10.1186/s12864-017-3576-y
Imran, Q. M. et al. Transcriptome wide identification and characterization of NO-responsive WRKY transcription factors in Arabidopsis thaliana L. Environ. Exp. Bot. 148, 128–143 (2018).
doi: 10.1016/j.envexpbot.2018.01.010
Hernandez, J. et al. Oxidative stress and antioxidative responses in plant–virus interactions. Physiol. Mol. Plant Pathol. 94, 134–148 (2015).
doi: 10.1016/j.pmpp.2015.09.001
Ahlfors, R., Brosche, M., Kollist, H. & Kangasjarvi, J. Nitric oxide modulates ozone-induced cell death, hormone biosynthesis and gene expression in Arabidopsis thaliana. Plant J. 58, 1–12 (2009).
pubmed: 19054359 doi: 10.1111/j.1365-313X.2008.03756.x
Oh, J. W., Kong, Q., Song, C., Carpenter, C. D. & Simon, A. E. Open reading frames of Turnip crinkle virus involved in satellite symptom expression and incompatibility with Arabidopsis thaliana ecotype Dijon. Mol. Plant Microbe Interact. 8, 979–987 (1995).
pubmed: 8664506 doi: 10.1094/MPMI-8-0979
Gietz, R. D. & Woods, R. A. Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzym. 350, 87–96 (2002).
doi: 10.1016/S0076-6879(02)50957-5
Nemeth, K. et al. Pleiotropic control of glucose and hormone responses by PRL1, a nuclear WD protein, in Arabidopsis. Genes Dev. 12, 3059–3073 (1998).
pubmed: 9765207 pmcid: 317193 doi: 10.1101/gad.12.19.3059
Knoester, M. et al. Ethylene-insensitive tobacco lacks nonhost resistance against soil-borne fungi. Proc. Natl. Acad. Sci. USA 95, 1933–1937 (1998).
pubmed: 9465120 doi: 10.1073/pnas.95.4.1933
Liu, Y., Schiff, M., Marathe, R. & Dinesh-Kumar, S. P. Tobacco Rar1, EDS1 and NPR1/NIM1 like genes are required for N-mediated resistance to tobacco mosaic virus. Plant J. 30, 415–429 (2002).
pubmed: 12028572 doi: 10.1046/j.1365-313X.2002.01297.x
Fernandez-Pozo, N., Rosli, H. G., Martin, G. B. & Mueller, L. A. The SGN VIGS tool: user-friendly software to design virus-induced gene silencing (VIGS) constructs for functional genomics. Mol. Plant 8, 486–488 (2015).
pubmed: 25667001 doi: 10.1016/j.molp.2014.11.024
Martínez-Pérez, M. et al. Arabidopsis m6A demethylase activity modulates viral infection of a plant virus and the m6A abundance in its genomic RNAs. Proc. Natl. Acad. Sci. USA 114, 10755–10760 (2017).
pubmed: 28923956 doi: 10.1073/pnas.1703139114
Powers, J. G. et al. A versatile assay for the identification of RNA silencing suppressors based on complementation of viral movement. Mol. Plant-Microbe Interact. 21(7), 879–890, https://doi.org/10.1094/MPMI-21-7-0879 (2008).
doi: 10.1094/MPMI-21-7-0879 pubmed: 18533829
Pallas, V., Mas, P. & Sanchez-Navarro, J. A. Detection of plant RNA viruses by nonisotopic dot-blot hybridization. Methods Mol. Biol. 81, 461–468 (1998).
pubmed: 9760535
Navarro, J. A., Serra-Soriano, M. & Pallás, V. A Protocol to Measure the Extent of Cell-to-cell Movement of RNA Viruses in Planta. Bio-protocol 4, e1269 (2014).
Koressaar, T. et al. Primer3_masker: integrating masking of template sequence with primer design software. Bioinformatics 34, 1937–1938 (2018).
pubmed: 29360956 doi: 10.1093/bioinformatics/bty036
Lilly, S. T., Drummond, R. S., Pearson, M. N. & MacDiarmid, R. M. Identification and validation of reference genes for normalization of transcripts from virus-infected Arabidopsis thaliana. Mol. Plant Microbe Interact. 24, 294–304 (2011).
pubmed: 21091160 doi: 10.1094/MPMI-10-10-0236

Auteurs

José A Navarro (JA)

Instituto de Biología Molecular y Celular de Plantas. Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia. Avda. Ingeniero Fausto Elio, 46022, Valencia, Spain. janavarr@ibmcp.upv.es.

Marta Serra-Soriano (M)

Instituto de Biología Molecular y Celular de Plantas. Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia. Avda. Ingeniero Fausto Elio, 46022, Valencia, Spain.

Lorena Corachán-Valencia (L)

Instituto de Biología Molecular y Celular de Plantas. Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia. Avda. Ingeniero Fausto Elio, 46022, Valencia, Spain.

Vicente Pallás (V)

Instituto de Biología Molecular y Celular de Plantas. Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia. Avda. Ingeniero Fausto Elio, 46022, Valencia, Spain. vpallas@ibmcp.upv.es.

Articles similaires

Arabidopsis Arabidopsis Proteins Osmotic Pressure Cytoplasm RNA, Messenger
Genome Size Genome, Plant Magnoliopsida Evolution, Molecular Arabidopsis
Glycine max Photoperiod Ubiquitin-Protein Ligases Flowers Gene Expression Regulation, Plant
1.00
Plasmodesmata Endoplasmic Reticulum Arabidopsis Cytokinesis Arabidopsis Proteins

Classifications MeSH