Proteogenomic analysis of granulocyte macrophage colony- stimulating factor autoantibodies in the blood of a patient with autoimmune pulmonary alveolar proteinosis.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
18 03 2020
Historique:
received: 17 09 2019
accepted: 02 03 2020
entrez: 20 3 2020
pubmed: 20 3 2020
medline: 24 11 2020
Statut: epublish

Résumé

Recently, attempts to reveal the structures of autoantibodies comprehensively using improved proteogenomics technology, have become popular. This technology identifies peptides in highly purified antibodies by using an Orbitrap device to compare spectra from liquid chromatography-tandem mass spectrometry against a cDNA database obtained through next-generation sequencing. In this study, we first analyzed granulocyte-macrophage colony-stimulating factor (GM-CSF) autoantibodies in a patient with autoimmune pulmonary alveolar proteinosis, using the trapped ion mobility spectrometry coupled with quadrupole time-of-flight (TIMS-TOF) instrument. The TIMS-TOF instrument identified peptides that partially matched sequences in up to 156 out of 162 cDNA clones. Complementarity-determining region 3 (CDR3) was fully and partially detected in nine and 132 clones, respectively. Moreover, we confirmed one unique framework region 4 (FR4) and at least three unique across CDR3 to FR4 peptides via de novo peptide sequencing. This new technology may thus permit the comprehensive identification of autoantibody structure.

Identifiants

pubmed: 32188922
doi: 10.1038/s41598-020-61934-y
pii: 10.1038/s41598-020-61934-y
pmc: PMC7080758
doi:

Substances chimiques

Autoantibodies 0
Autoantigens 0
Granulocyte-Macrophage Colony-Stimulating Factor 83869-56-1

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

4923

Références

Seymour, J. F. & Presneill, J. J. Pulmonary alveolar proteinosis: Progress in the first 44 years. American Journal of Respiratory and Critical Care Medicine. 166, 215–235 (2002).
doi: 10.1164/rccm.2109105
Trapnell, B. C., Whitsett, J. A. & Nakata, K. Pulmonary Alveolar Proteinosis. N. Engl. J. Med. 349, 2527–2539 (2003).
doi: 10.1056/NEJMra023226
Borie, R. et al. Pulmonary alveolar proteinosis. Eur. Respir. Rev. 20, 98–107 (2011).
doi: 10.1183/09059180.00001311
Nei, T. et al. IgM-type GM-CSF autoantibody is etiologically a bystander but associated with IgG-type autoantibody production in autoimmune pulmonary alveolar proteinosis. Am. J. Physiol. Cell. Mol. Physiol. 302, L959–L964 (2012).
doi: 10.1152/ajplung.00378.2011
Uchida, K. et al. Granulocyte/macrophage-colony-stimulating factor autoantibodies and myeloid cell immune functions in healthy subjects. Blood 113, 2547–2556 (2009).
doi: 10.1182/blood-2008-05-155689
Nei, T. et al. Memory B cell pool of autoimmune pulmonary alveolar proteinosis patients contains higher frequency of GM-CSF autoreactive B cells than healthy subjects. Immunol. Lett. 212, 22–29 (2019).
doi: 10.1016/j.imlet.2019.05.013
Revoltella, R. P. et al. Antibodies binding granulocyte-macrophage colony stimulating factor produced by cord blood-derived B cell lines immortalized by Epstein-Barr virus in vitro. Cell. Immunol. 204, 114–127 (2000).
doi: 10.1006/cimm.2000.1704
Piccoli, L. et al. Neutralization and clearance of GM-CSF by autoantibodies in pulmonary alveolar proteinosis. Nat. Commun. 6, (2015).
Wang, Y. et al. Characterization of pathogenic human monoclonal autoantibodies against GM-CSF. Proc. Natl. Acad. Sci. 110, 7832–7837 (2013).
doi: 10.1073/pnas.1216011110
Sheynkman, G. M., Shortreed, M. R., Cesnik, A. J. & Lloyd, M. Proteogenomics: Integrating Next-Generation Sequencing and Mass Spectrometry to Characterize Human Proteomic Variation. Annu Rev Anal Chem (Palo Alto Calif) 12, 521–545 (2016).
doi: 10.1146/annurev-anchem-071015-041722
Cheung, W. C. et al. A proteomics approach for the identification and cloning of monoclonal antibodies from serum. Nat. Biotechnol. 30, 447–452 (2012).
doi: 10.1038/nbt.2167
Iversen, R. et al. Strong Clonal Relatedness between Serum and Gut IgA despite Different Plasma Cell Origins Article Strong Clonal Relatedness between Serum and Gut IgA despite Different Plasma Cell Origins. Cell Rep. 2357–2367 (2017) https://doi.org/10.1016/j.celrep.2017.08.036 .
doi: 10.1016/j.celrep.2017.08.036
Chen, J. et al. Proteomic Analysis of Pemphigus Autoantibodies Indicates a Larger, More Diverse, and More Dynamic Repertoire than Determined by B Cell Genetics Resource Proteomic Analysis of Pemphigus Autoantibodies Indicates a Larger, More Diverse, and More Dynamic. Cell Reports 18, 237–247 (2017).
doi: 10.1016/j.celrep.2016.12.013
Vasilopoulou, C. G. et al. Trapped ion mobility spectrometry (TIMS) and parallel accumulation - serial fragmentation (PASEF) enable in-depth lipidomics from minimal sample amounts. BioRxiv (2019).
Meier, F. et al. Online Parallel Accumulation–Serial Fragmentation (PASEF) with a Novel Trapped Ion Mobility Mass Spectrometer. Mol. Cell. Proteomics 17, 2534–2545 (2018).
doi: 10.1074/mcp.TIR118.000900
Meier, F. et al. Parallel Accumulation-Serial Fragmentation (PASEF): Multiplying Sequencing Speed and Sensitivity by Synchronized Scans in a Trapped Ion Mobility Device. J. Proteome Res 14, 5378–5387 (2015).
doi: 10.1021/acs.jproteome.5b00932
Alamyar, E., Duroux, P., Lefranc, M. P. & Giudicelli, V. IMGT® tools for the nucleotide analysis of immunoglobulin (IG) and t cell receptor (TR) V-(D)-J repertoires, polymorphisms, and IG mutations: IMGT/V-QUEST and IMGT/HighV-QUEST for NGS. Methods Mol. Biol. 882, 569–604 (2012).
doi: 10.1007/978-1-61779-842-9_32
Downard, K. M., Morrissey, B. & Schwahn, A. B. Orbitrap mass spectrometry: instrumentation, ion motion and applications. Mass Spectrosc. Rev. 28, 35–49 (2009).
doi: 10.1002/mas.20194
Chris, M., Ryan, D. & Chien, A. S. Deep proteome mining of FFPE tissue with PASEF technology. 6th ASMS, San Diego, California, ThP785, June 7 (2018).
Dunn-Walters, D., Townsend, C., Sinclair, E. & Stewart, A. Immunoglobulin gene analysis as a tool for investigating human immune responses. Immunological Reviews 284, 132–147 (2018).
doi: 10.1111/imr.12659
Matz, M. et al. Amplification of cDNA ends based on template-switching effect and step-out PCR. Nucleic Acids Res. 27, 1558–1560 (1999).
doi: 10.1093/nar/27.6.1558
Gupta, N. T. et al. Change-O: A toolkit for analyzing large-scale B cell immunoglobulin repertoire sequencing data. Bioinformatics 31, 3356–3358 (2015).
doi: 10.1093/bioinformatics/btv359
Uchida, Y. et al. A study protocol for quantitative targeted absolute proteomics (QTAP) by LC-MS/MS: Application for inter-strain differences in protein expression levels of transporters, receptors, claudin-5, and marker proteins at the blood-brain barrier in ddY, FVB, and. Fluids Barriers CNS 10, 1 (2013).
doi: 10.1186/2045-8118-10-21
Kamiie, J. et al. Quantitative atlas of membrane transporter proteins: Development and application of a highly sensitive simultaneous LC/MS/MS method combined with novel in-silico peptide selection criteria. Pharm. Res. 25, 1469–1483 (2008).
doi: 10.1007/s11095-008-9532-4
Boutz, D. R. et al. Proteomic identification of monoclonal antibodies from serum. Anal Chem. 20, 4758–66 (2014).
doi: 10.1021/ac4037679
Nei, T. et al. Light chain (κ/λ) ratio of GM-CSF autoantibodies is associated with disease severity in autoimmune pulmonary alveolar proteinosis. Clin. Immunol. 149, 357–364 (2013).
doi: 10.1016/j.clim.2013.10.002
Uchida, K. et al. High-affinity autoantibodies specifically eliminate granulocyte-macrophage colony-stimulating factor activity in the lungs of patients with idiopathic pulmonary alveolar proteinosis. Blood 103, 1089–1098 (2004).
doi: 10.1182/blood-2003-05-1565
Zhu, Y. Y., Machleder, E. M., Chenchik, A., Li, R. & Siebert, P. D. Reverse transcriptase template switching: A SMART
doi: 10.2144/01304pf02
Cocquet, J., Chong, A., Zhang, G. & Veitia, R. A. Reverse transcriptase template switching and false alternative transcripts. Genomics 88, 127–131 (2006).
doi: 10.1016/j.ygeno.2005.12.013
Schmieder, R. & Edwards, R. Quality control and preprocessing of metagenomic datasets. Bioinformatics 27, 863–864 (2011).
doi: 10.1093/bioinformatics/btr026
Bolotin, D. A. et al. MiXCR: Software for comprehensive adaptive immunity profiling. Nat. Methods 12, 380–381 (2015).
doi: 10.1038/nmeth.3364
Gupta, N. T. et al. Hierarchical Clustering Can Identify B Cell Clones with High Confidence in Ig Repertoire Sequencing Data. J. Immunol. 198, 2489–2499 (2017).
doi: 10.4049/jimmunol.1601850
Rabilloud, T., Valette, C. & Lawrence, J. J. Sample application by in‐gel rehydration improves the resolution of two‐dimensional electrophoresis with immobilized pH gradients in the first dimension. Electrophoresis 15, 1552–1558 (1994).
doi: 10.1002/elps.11501501223
Sanchez, J.-C. et al. Improved and simplified in-gel sample application using. Electrophoresis 18, 324–327 (1997).
doi: 10.1002/elps.1150180305
Gharahdaghi, F., Weinberg, C. R., Meagher, D. A., Imai, B. S. & Mass, M. S. Spectrometric identification of proteins from silver- stained polyacrylamide gel: a method for the removal of silve … Mass spectrometric identification of proteins from silver-stain. Electrophoresis 20, 1–6 (1999).
doi: 10.1002/(SICI)1522-2683(19990301)20:3<601::AID-ELPS601>3.0.CO;2-6
Kristensen, D. B. et al. Mass spectrometric approaches for the characterization of proteins on a hybrid quadrupole time-of-flight (Q-TOF) mass spectrometer Proteomics and 2-DE. Electrophoresis 21, 430–439 (2000).
doi: 10.1002/(SICI)1522-2683(20000101)21:2<430::AID-ELPS430>3.0.CO;2-0
Lopez, M. F. et al. A comparison of silver stain and SYPRO Ruby Protein Gel Stain with respect to protein detection in two-dimensional gels and identification by peptide mass profiling. Electrophoresis 21, 3673–3683 (2000).
doi: 10.1002/1522-2683(200011)21:17<3673::AID-ELPS3673>3.0.CO;2-M
Ma, B. et al. PEAKS: powerful software for peptide de novo sequencing by tandem mass spectrometry. Rapid Commun Mass Spectrom 17, 2337–2342 (2003).
doi: 10.1002/rcm.1196
Gupta, N. & Pevzner, P. A. False Discovery Rates of Protein Identifications A Strike against the Two-Peptide Rule. J Proteome Res 8, 4173–4181 (2012).
doi: 10.1021/pr9004794
Zhang, J. et al. PEAKS DB: De Novo Sequencing Assisted Database Search for Sensitive and Accurate Peptide Identification. Mol. Cell. Proteomics 11, M111.010587 (2012).
doi: 10.1074/mcp.M111.010587
Kodama, Y. et al. The DDBJ Japanese genotype-phenotype archive for genetic and phenotypic human data. Nucleic Acids Res. 43, D18–D22 (2015).
doi: 10.1093/nar/gku1120
Okuda, S. et al. JPOSTrepo: An international standard data repository for proteomes. Nucleic Acids Res. 45, D1107–D1111 (2017).
doi: 10.1093/nar/gkw1080

Auteurs

Atsushi Hashimoto (A)

Niigata University Medical & Dental Hospital, Niigata, Japan.

Shiho Takeuchi (S)

Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.

Ryo Kajita (R)

Bruker Japan K.K., Kanagawa, Japan.

Akira Yamagata (A)

IDEA Consultants, Inc., Osaka, Japan.

Ryota Kakui (R)

IDEA Consultants, Inc., Osaka, Japan.

Takahiro Tanaka (T)

Niigata University Medical & Dental Hospital, Niigata, Japan.

Koh Nakata (K)

Niigata University Medical & Dental Hospital, Niigata, Japan. radical@med.niigata-u.ac.jp.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH