Multi-modular AI Approach to Streamline Autism Diagnosis in Young Children.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
19 03 2020
Historique:
received: 12 03 2019
accepted: 20 02 2020
entrez: 21 3 2020
pubmed: 21 3 2020
medline: 15 12 2020
Statut: epublish

Résumé

Autism has become a pressing healthcare challenge. The instruments used to aid diagnosis are time and labor expensive and require trained clinicians to administer, leading to long wait times for at-risk children. We present a multi-modular, machine learning-based assessment of autism comprising three complementary modules for a unified outcome of diagnostic-grade reliability: A 4-minute, parent-report questionnaire delivered via a mobile app, a list of key behaviors identified from 2-minute, semi-structured home videos of children, and a 2-minute questionnaire presented to the clinician at the time of clinical assessment. We demonstrate the assessment reliability in a blinded, multi-site clinical study on children 18-72 months of age (n = 375) in the United States. It outperforms baseline screeners administered to children by 0.35 (90% CI: 0.26 to 0.43) in AUC and 0.69 (90% CI: 0.58 to 0.81) in specificity when operating at 90% sensitivity. Compared to the baseline screeners evaluated on children less than 48 months of age, our assessment outperforms the most accurate by 0.18 (90% CI: 0.08 to 0.29 at 90%) in AUC and 0.30 (90% CI: 0.11 to 0.50) in specificity when operating at 90% sensitivity.

Identifiants

pubmed: 32193406
doi: 10.1038/s41598-020-61213-w
pii: 10.1038/s41598-020-61213-w
pmc: PMC7081341
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

5014

Subventions

Organisme : NIBIB NIH HHS
ID : R01 EB025025
Pays : United States

Références

Baio, J. et al. Prevalence of autism spectrum disorder among children aged 8 years— autism and developmental disabilities monitoring network, 11 sites, united states, 2014. MMWR Surveill Summ 67(No. SS-6), 1–23, https://doi.org/10.15585/mmwr.ss6706a1 (2018).
doi: 10.15585/mmwr.ss6706a1
Association., A. P. & Association., A. P. Diagnostic and statistical manual of mental disorders : DSM-5 (American Psychiatric Association Arlington, VA, 2013), 5th ed. edn.
Patten, E., Ausderau, K. K., Watson, L. R. & Baranek, G. T. Sensory response patterns in nonverbal children with asd. Autism Res. Treat.2013, https://doi.org/10.1155/2013/436286 (2013).
Dawson, G. & Bernier, R. A quarter century of progress on the early detection and treatment of autism spectrum disorder. Dev. Psychopathol. 25, 1455–1472, https://doi.org/10.1017/S0954579413000710 (2013).
doi: 10.1017/S0954579413000710 pubmed: 24342850
Dawson, G. et al. Randomized, controlled trial of an intervention for toddlers with autism: The early start denver model. Pediatrics 125, e17–e23 https://doi.org/10.1542/peds.2009-0958 , http://pediatrics.aappublications.org/content/125/1/e17.full.pdf (2010).
Gordon-Lipkin, E., Foster, J. & Peacock, G. Whittling down the wait time exploring models to minimize the delay from initial concern to diagnosis and treatment of autism spectrum disorder. Pediatr. clinics North Am.63, 851–859 https://doi.org/10.1016/j.pcl.2016.06.007 (2016). Exported from https://app.dimensions.ai on 2018/10/19.
Bernier, R., Mao, A. & Yen, J. Diagnosing autism spectrum disorders in primary care. Practitioner 255(1745), 27–30 (2011).
Achenbach, T. & Rescorla, L. Manual for the ASEBA preschool forms & profiles. Univ. Vermont, Res. Cent. for Child. Youth & Fam. (2000).
Norris, M. & Lecavalier, L. Screening accuracy of level 2 autism spectrum disorder rating scales: A review of selected instruments. Autism, 14, 263–284, https://doi.org/10.1177/1362361309348071 (2010). PMID: 20591956,
Charman, T. & Gotham, K. Measurement issues: Screening and diagnostic instruments for autism spectrum disorders - lessons from research and practise. Child Adolesc. Mental Heal.18, 52–63, https://doi.org/10.1111/j.1475-3588.2012.00664.x .
Lord, C., Rutter, M. & Le Couteur, A. Autism diagnostic interview-revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. J. Autism Dev. Disord. 24, 659–685 (1994).
doi: 10.1007/BF02172145
Lord, C. et al. Autism diagnostic observation schedule: a standardized observation of communicative and social behavior. J Autism Dev Disord 19, 185–212 (1989).
doi: 10.1007/BF02211841
Abbas, H., Garberson, F., Glover, E. & Wall, D. P. Machine learning approach for early detection of autism by combining questionnaire and home video screening. J. Am. Med. Informatics Assoc. ocy039, 10.1093_jamia_ocy039/1/ocy039 (2018).
Cognoa, Inc. 2390 El Camino Real St 220, Palo Alto, CA 94306 https://www.cognoa.com/ .
Wall, D. P., Dally, R. L., Luyster, R., Jung, J.-Y. & DeLuca, T. F. Use of artificial intelligence to shorten the behavioral diagnosis of autism. PLoS One, https://doi.org/10.1371/journal.pone.0043855. (2012).
Lord, C. et al. A multisite study of the clinical diagnosis of different autism spectrum disorders. Arch. Gen. Psychiatry 69, 306–313 (2012).
doi: 10.1001/archgenpsychiatry.2011.148
Kanne, S., Arnstein Carpenter, L. & Warren, Z. Screening in toddlers and preschoolers at risk for autism spectrum disorder: Evaluating a novel mobile-health screening tool. Autism Res. (2017).
Moody, E. J. et al. Screening for autism with the srs and scq: Variations across demographic, developmental and behavioral factors in preschool children. J. Autism Dev. Disord. 47, 3550–3561 (2017).
doi: 10.1007/s10803-017-3255-5
Aldridge, F. J., Gibbs, V. M., Schmidhofer, K. & Williams, M. Investigating the Clinical Usefulness of the Social Responsiveness Scale (SRS) in a Tertiary Level, Autism Spectrum Disorder Specific Assessment Clinic. Journal of Autism and Developmental Disorders 42(8), 294–300 (2012).
Schanding, G. T., Nowell, K. P. & Goin-Kochel, R. P. Utility of the Social Communication Questionnaire-Current and Social Responsiveness Scale as Teacher-Report Screening Tools for Autism Spectrum Disorders. Journal of Autism and Developmental Disorders 42(8), 1705–1716 (2012).
Jacobs, R. A. Methods for combining experts’ probability assessments. Neural Computation 7, 867–888, https://doi.org/10.1162/neco.1995.7.5.867 (1995).
doi: 10.1162/neco.1995.7.5.867 pubmed: 7584890
Falkmer, T., Anderson, K., Falkmer, M. & Horlin, C. Diagnostic procedures in autism spectrum disorders: a systematic literature review. Eur. Child & Adolesc. Psychiatry 22, 329–340, https://doi.org/10.1007/s00787-013-0375-0 (2013).
doi: 10.1007/s00787-013-0375-0

Auteurs

Halim Abbas (H)

Cognoa Inc., Palo Alto, CA, USA.

Ford Garberson (F)

Cognoa Inc., Palo Alto, CA, USA.

Stuart Liu-Mayo (S)

Cognoa Inc., Palo Alto, CA, USA.

Eric Glover (E)

Cognoa Inc., Palo Alto, CA, USA. eri_g@ericglover.com.

Dennis P Wall (DP)

Departments of Pediatrics, Biomedical Data Science and Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH