A flow cytometry-based analysis to establish a cell cycle synchronization protocol for Saccharum spp.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
19 03 2020
19 03 2020
Historique:
received:
06
08
2019
accepted:
09
03
2020
entrez:
21
3
2020
pubmed:
21
3
2020
medline:
15
12
2020
Statut:
epublish
Résumé
Modern sugarcane is an unusually complex heteroploid crop, and its genome comprises two or three subgenomes. To reduce the complexity of sugarcane genome research, the ploidy level and number of chromosomes can be reduced using flow chromosome sorting. However, a cell cycle synchronization (CCS) protocol for Saccharum spp. is needed that maximizes the accumulation of metaphase chromosomes. For flow cytometry analysis in this study, we optimized the lysis buffer, hydroxyurea(HU) concentration, HU treatment time and recovery time for sugarcane. We determined the mitotic index by microscopic observation and calculation. We found that WPB buffer was superior to other buffers for preparation of sugarcane nuclei suspensions. The optimal HU treatment was 2 mM for 18 h at 25 °C, 28 °C and 30 °C. Higher recovery treatment temperatures were associated with shorter recovery times (3.5 h, 2.5 h and 1.5 h at 25 °C, 28 °C and 30 °C, respectively). The optimal conditions for treatment with the inhibitor of microtubule polymerization, amiprophos-methyl (APM), were 2.5 μM for 3 h at 25 °C, 28 °C and 30 °C. Meanwhile, preliminary screening of CCS protocols for Badila were used for some main species of genus Saccharum at 25 °C, 28 °C and 30 °C, which showed that the average mitotic index decreased from 25 °C to 30 °C. The optimal sugarcane CCS protocol that yielded a mitotic index of >50% in sugarcane root tips was: 2 mM HU for 18 h, 0.1 X Hoagland's Solution without HU for 3.5 h, and 2.5 μM APM for 3.0 h at 25 °C. The CCS protocol defined in this study should accelerate the development of genomic research and cytobiology research in sugarcane.
Identifiants
pubmed: 32193460
doi: 10.1038/s41598-020-62086-9
pii: 10.1038/s41598-020-62086-9
pmc: PMC7081271
doi:
Substances chimiques
Buffers
0
Nitrobenzenes
0
Organothiophosphorus Compounds
0
amiprophos methyl
36001-88-4
Hydroxyurea
X6Q56QN5QC
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
5016Références
Souza, G. M. et al. The Sugarcane Genome Challenge: Strategies for Sequencing a Highly Complex Genome. Tropical Plant Biology 4, 145–156, https://doi.org/10.1007/s12042-011-9079-0 (2011).
doi: 10.1007/s12042-011-9079-0
Grivet, L., Daniels, C., Glaszmann, J.-C. & D’Hont, A. A review of recent molecular genetics evidence for sugarcane evolution and domestication. Ethnobotany Research and Applications 2, 009–017 (2004).
doi: 10.17348/era.2.0.9-17
Piperidis, G., Piperidis, N. & D’Hont, A. Molecular cytogenetic investigation of chromosome composition and transmission in sugarcane. Molecular Genetics and Genomics 284, 65–73 (2010).
doi: 10.1007/s00438-010-0546-3
Thirugnanasambandam, P. P., Hoang, N. V. & Henry, R. J. The Challenge of Analyzing the Sugarcane Genome. Frontiers in plant science 9, 616–616, https://doi.org/10.3389/fpls.2018.00616 (2018).
doi: 10.3389/fpls.2018.00616
pubmed: 29868072
pmcid: 29868072
Doerner, P. W. Cell Cycle Regulation in Plants. Plant physiology 106, 823–827, https://doi.org/10.2307/4276136 (1994).
doi: 10.2307/4276136
pubmed: 12232370
pmcid: 12232370
Francis, D. The cell cycle in plant development. New Phytologist 122, 1–20, https://doi.org/10.1111/j.1469-8137.1992.tb00048.x (2010).
doi: 10.1111/j.1469-8137.1992.tb00048.x
Ruban, A. S. & Badaeva, E. D. Evolution of the S-Genomes in Triticum-Aegilops Alliance: Evidences From Chromosome. Analysis. Frontiers in plant science 9, 1756–1756, https://doi.org/10.3389/fpls.2018.01756 (2018).
doi: 10.3389/fpls.2018.01756
pubmed: 30564254
pmcid: 30564254
Doležel, J., Greilhuber, J. & Suda, J. Flow cytometry with plants: an overview. Flow cytometry with plant cells: analysis of genes, chromosomes and genomes, 41–65 (2007).
Ashihara, T. & Baserga, R. Cell synchronization. Methods in enzymology 58, 248–262, https://doi.org/10.1016/S0076-6879(79)58141-5 (1979).
doi: 10.1016/S0076-6879(79)58141-5
pubmed: 423765
pmcid: 423765
Hartwell, L. H. & Kastan, M. B. Cell cycle control and cancer. Science (New York, N.Y.) 266, 1821–1828, https://doi.org/10.1126/science.7997877 (1994).
doi: 10.1126/science.7997877
Kopecký, D. et al. Flow sorting and sequencing meadow fescue chromosome 4F. Plant physiology 163, 1323–1337, https://doi.org/10.1104/pp.113.224105 (2013).
doi: 10.1104/pp.113.224105
pubmed: 24096412
pmcid: 24096412
Vrána, J. et al. Flow sorting of mitotic chromosomes in common wheat (Triticum aestivum L.). Genetics 156, 2033–2041, https://doi.org/10.1007/978-94-017-3674-9_70 (2000).
doi: 10.1007/978-94-017-3674-9_70
pubmed: 11102393
pmcid: 11102393
Vrana, J., Simkova, H., Kubalakova, M., Cihalikova, J. & Dolezel, J. Flow cytometric chromosome sorting in plants: the next generation. Methods (San Diego, Calif.) 57, 331–337, https://doi.org/10.1016/j.ymeth.2012.03.006 (2012).
doi: 10.1016/j.ymeth.2012.03.006
Hirt, H. & Heberle-Bors, E. Cell cycle regulation in higher plants. Seminars in Developmental Biology 5, 147–154, https://doi.org/10.1006/sedb.1994.1020 (1994).
doi: 10.1006/sedb.1994.1020
Dolezel, J., Cihalikova, J. & Lucretti, S. A high-yield procedure for isolation of metaphase chromosomes from root tips of Vicia faba L. Planta 188, 93–98, https://doi.org/10.1007/bf00198944 (1992).
doi: 10.1007/bf00198944
pubmed: 24178204
pmcid: 24178204
Dolezel, J., Cihalikova, J., Weiserova, J. & Lucretti, S. Cell cycle synchronization in plant root meristems. Methods in cell science: an official journal of the Society for In Vitro Biology 21, 95–107, https://doi.org/10.1023/A:1009876621187 (1999).
doi: 10.1023/A:1009876621187
Kaeppler, H. F., Kaeppler, S. M., Lee, J. H. & Arumuganathan, K. Synchronization of cell division in root tips of seven major cereal species for high yields of metaphase chromosomes for flow-cytometric analysis and sorting. Plant Molecular Biology Reporter 15, 141–147, https://doi.org/10.1007/BF02812264 (1997).
doi: 10.1007/BF02812264
Mirzaghaderi, G. A simple metaphase chromosome preparation from meristematic root tip cells of wheat for karyotyping or in situ hybridization. Afr J Biotechnol 9, 314–318 (2010).
Shen, J., Xu, J., Chen, J., Zheng, R. & Shi, J. Cell synchronization and isolation of chromosomes from Chinese fir root tips for flow cytometric analysis. Biotechnology letters 37, 1309–1314, https://doi.org/10.1007/s10529-015-1800-x (2015).
doi: 10.1007/s10529-015-1800-x
Polit, J. T. An improved method for the cell cycle synchronization of Vicia faba root meristem cells. Acta Physiologiae Plantarum 30, 315–324 (2008).
doi: 10.1007/s11738-007-0124-4
Vrána, J. et al. Flow analysis and sorting of plant chromosomes. Current protocols in cytometry 78, 5.3. 1–5.3. 43 (2016).
doi: 10.1002/cpcy.9
Lysak, M. A. et al. Flow karyotyping and sorting of mitotic chromosomes of barley (Hordeum vulgare L.). Chromosome research: an international journal on the molecular, supramolecular and evolutionary aspects of chromosome biology 7, 431–444, https://doi.org/10.1023/a:1009293628638 (1999).
doi: 10.1023/a:1009293628638
Loureiro, J., Rodriguez, E., Doležel, J. & Santos, C. Two new nuclear isolation buffers for plant DNA flow cytometry: a test with 37 species. Annals of botany 100, 875–888 (2007).
doi: 10.1093/aob/mcm152
Li, L., Arumuganathan, K., Gill, K. S. & Song, Y. Flow sorting and microcloning of maize chromosome 1. Hereditas 141, 55–60, https://doi.org/10.1111/j.1601-5223.2004.01847.x (2004).
doi: 10.1111/j.1601-5223.2004.01847.x
pubmed: 15383072
pmcid: 15383072
Giorgi, D. et al. FISHIS: fluorescence in situ hybridization in suspension and chromosome flow sorting made easy. PLoS One 8, e57994 (2013).
doi: 10.1371/journal.pone.0057994
Clain, E. & Brulfert, A. Hydroxyurea-induced mitotic synchronization in Allium sativum root meristems. Planta 150, 26–31, https://doi.org/10.1007/bf00385610 (1980).
doi: 10.1007/bf00385610
pubmed: 24306521
pmcid: 24306521
Li, L. et al. Flow cytometric sorting of maize chromosome 9 from an oat-maize chromosome addition line. Theoretical and applied genetics 102, 658–663 (2001).
doi: 10.1007/s001220051694
Suchánková, P. et al. Dissection of the nuclear genome of barley by chromosome flow sorting. Theoretical and applied genetics 113, 651–659 (2006).
doi: 10.1007/s00122-006-0329-8
Kubaláková, M., Vrána, J., Číhalíková, J., Šimková, H. & Doležel, J. Flow karyotyping and chromosome sorting in bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics 104, 1362–1372 (2002).
doi: 10.1007/s00122-002-0888-2
Lucretti, S., Dolezel, J., Schubert, I. & Fuchs, J. Flow karyotyping and sorting of Vicia faba chromosomes. TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik 85, 665–672, https://doi.org/10.1007/bf00225003 (1993).
doi: 10.1007/bf00225003
pubmed: 24196034
pmcid: 24196034
Kumagai-Sano, F., Hayashi, T., Sano, T. & Hasezawa, S. Cell cycle synchronization of tobacco BY-2 cells. Nature protocols 1, 2621–2627, https://doi.org/10.1038/nprot.2006.381 (2006).
doi: 10.1038/nprot.2006.381
pubmed: 17406517
pmcid: 17406517
Gualberti, G., Dolezel, J., Macas, J. & Lucretti, S. Preparation of pea (Pisum sativum L.) chromosome and nucleus suspensions from single root tips. TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik 92, 744–751, https://doi.org/10.1007/bf00226097 (1996).
doi: 10.1007/bf00226097
pubmed: 24166399
pmcid: 24166399
Lee, J. H. et al. Root tip cell cycle synchronization and metaphase-chromosome isolation suitable for flow sorting in common wheat (Triticum aestivum L.). Genome 40, 633–638 (1997).
doi: 10.1139/g97-083
Halfmann, R. A., Stelly, D. M. & Young, D. H. Towards improved cell cycle synchronization and chromosome preparation methods in cotton. Journal of Cotton Science 11, 667–678 (2007).
Sharma, A. K. Synchronization in plant cells–an introduction. Methods in cell science: an official journal of the Society for In Vitro. Biology 21, 73–78, https://doi.org/10.1023/A:1009828419370 (1999).
doi: 10.1023/A:1009828419370
Arumuganathan, K., Slattery, J. P., Tanksley, S. D. & Earle, E. D. Preparation and flow cytometric analysis of metaphase chromosomes of tomato. TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik 82, 101–111, https://doi.org/10.1007/bf00231283 (1991).
doi: 10.1007/bf00231283
pubmed: 24212866
pmcid: 24212866
Hopping, M. E. Preparation and preservation of nuclei from plant tissues for quantitative DNA analysis by flow cytometry. Nz J Bot 31, 391–401, https://doi.org/10.1080/0028825X.1993.10419517 (1993).
doi: 10.1080/0028825X.1993.10419517
Bainard, J. D., Fazekas, A. J. & Newmaster, S. G. Methodology significantly affects genome size estimates: quantitative evidence using bryophytes. Cytometry. Part A: the journal of the International Society for Analytical Cytology 77, 725–732, https://doi.org/10.1002/cyto.a.20902 (2010).
doi: 10.1002/cyto.a.20902