Compartmentalised acyl-CoA metabolism and roles in chromatin regulation.
Acyl-CoA
Acylation
Compartmentalisation
Histone
Metabolism
Journal
Molecular metabolism
ISSN: 2212-8778
Titre abrégé: Mol Metab
Pays: Germany
ID NLM: 101605730
Informations de publication
Date de publication:
08 2020
08 2020
Historique:
received:
23
10
2019
revised:
03
01
2020
accepted:
07
01
2020
pubmed:
23
3
2020
medline:
29
6
2021
entrez:
23
3
2020
Statut:
ppublish
Résumé
Many metabolites serve as important signalling molecules to adjust cellular activities and functions based on nutrient availability. Links between acetyl-CoA metabolism, histone lysine acetylation, and gene expression have been documented and studied over the past decade. In recent years, several additional acyl modifications to histone lysine residues have been identified, which depend on acyl-coenzyme A thioesters (acyl-CoAs) as acyl donors. Acyl-CoAs are intermediates of multiple distinct metabolic pathways, and substantial evidence has emerged that histone acylation is metabolically sensitive. Nevertheless, the metabolic sources of acyl-CoAs used for chromatin modification in most cases remain poorly understood. Elucidating how these diverse chemical modifications are coupled to and regulated by cellular metabolism is important in deciphering their functional significance. In this article, we review the metabolic pathways that produce acyl-CoAs, as well as emerging evidence for functional roles of diverse acyl-CoAs in chromatin regulation. Because acetyl-CoA has been extensively reviewed elsewhere, we will focus on four other acyl-CoA metabolites integral to major metabolic pathways that are also known to modify histones: succinyl-CoA, propionyl-CoA, crotonoyl-CoA, and butyryl-CoA. We also briefly mention several other acyl-CoA species, which present opportunities for further research; malonyl-CoA, glutaryl-CoA, 3-hydroxybutyryl-CoA, 2-hydroxyisobutyryl-CoA, and lactyl-CoA. Each acyl-CoA species has distinct roles in metabolism, indicating the potential to report shifts in the metabolic status of the cell. For each metabolite, we consider the metabolic pathways in which it participates and the nutrient sources from which it is derived, the compartmentalisation of its metabolism, and the factors reported to influence its abundance and potential nuclear availability. We also highlight reported biological functions of these metabolically-linked acylation marks. Finally, we aim to illuminate key questions in acyl-CoA metabolism as they relate to the control of chromatin modification. A majority of acyl-CoA species are annotated to mitochondrial metabolic processes. Since acyl-CoAs are not known to be directly transported across mitochondrial membranes, they must be synthesized outside of mitochondria and potentially within the nucleus to participate in chromatin regulation. Thus, subcellular metabolic compartmentalisation likely plays a key role in the regulation of histone acylation. Metabolite tracing in combination with targeting of relevant enzymes and transporters will help to map the metabolic pathways that connect acyl-CoA metabolism to chromatin modification. The specific function of each acyl-CoA may be determined in part by biochemical properties that affect its propensity for enzymatic versus non-enzymatic protein modification, as well as the various enzymes that can add, remove and bind each modification. Further, competitive and inhibitory effects of different acyl-CoA species on these enzymes make determining the relative abundance of acyl-CoA species in specific contexts important to understand the regulation of chromatin acylation. An improved and more nuanced understanding of metabolic regulation of chromatin and its roles in physiological and disease-related processes will emerge as these questions are answered.
Sections du résumé
BACKGROUND
Many metabolites serve as important signalling molecules to adjust cellular activities and functions based on nutrient availability. Links between acetyl-CoA metabolism, histone lysine acetylation, and gene expression have been documented and studied over the past decade. In recent years, several additional acyl modifications to histone lysine residues have been identified, which depend on acyl-coenzyme A thioesters (acyl-CoAs) as acyl donors. Acyl-CoAs are intermediates of multiple distinct metabolic pathways, and substantial evidence has emerged that histone acylation is metabolically sensitive. Nevertheless, the metabolic sources of acyl-CoAs used for chromatin modification in most cases remain poorly understood. Elucidating how these diverse chemical modifications are coupled to and regulated by cellular metabolism is important in deciphering their functional significance.
SCOPE OF REVIEW
In this article, we review the metabolic pathways that produce acyl-CoAs, as well as emerging evidence for functional roles of diverse acyl-CoAs in chromatin regulation. Because acetyl-CoA has been extensively reviewed elsewhere, we will focus on four other acyl-CoA metabolites integral to major metabolic pathways that are also known to modify histones: succinyl-CoA, propionyl-CoA, crotonoyl-CoA, and butyryl-CoA. We also briefly mention several other acyl-CoA species, which present opportunities for further research; malonyl-CoA, glutaryl-CoA, 3-hydroxybutyryl-CoA, 2-hydroxyisobutyryl-CoA, and lactyl-CoA. Each acyl-CoA species has distinct roles in metabolism, indicating the potential to report shifts in the metabolic status of the cell. For each metabolite, we consider the metabolic pathways in which it participates and the nutrient sources from which it is derived, the compartmentalisation of its metabolism, and the factors reported to influence its abundance and potential nuclear availability. We also highlight reported biological functions of these metabolically-linked acylation marks. Finally, we aim to illuminate key questions in acyl-CoA metabolism as they relate to the control of chromatin modification.
MAJOR CONCLUSIONS
A majority of acyl-CoA species are annotated to mitochondrial metabolic processes. Since acyl-CoAs are not known to be directly transported across mitochondrial membranes, they must be synthesized outside of mitochondria and potentially within the nucleus to participate in chromatin regulation. Thus, subcellular metabolic compartmentalisation likely plays a key role in the regulation of histone acylation. Metabolite tracing in combination with targeting of relevant enzymes and transporters will help to map the metabolic pathways that connect acyl-CoA metabolism to chromatin modification. The specific function of each acyl-CoA may be determined in part by biochemical properties that affect its propensity for enzymatic versus non-enzymatic protein modification, as well as the various enzymes that can add, remove and bind each modification. Further, competitive and inhibitory effects of different acyl-CoA species on these enzymes make determining the relative abundance of acyl-CoA species in specific contexts important to understand the regulation of chromatin acylation. An improved and more nuanced understanding of metabolic regulation of chromatin and its roles in physiological and disease-related processes will emerge as these questions are answered.
Identifiants
pubmed: 32199817
pii: S2212-8778(20)30007-7
doi: 10.1016/j.molmet.2020.01.005
pmc: PMC7300382
pii:
doi:
Substances chimiques
Acyl Coenzyme A
0
Chromatin
0
Histones
0
butyryl-coenzyme A
2140-48-9
propionyl-coenzyme A
317-66-8
Acetyl Coenzyme A
72-89-9
crotonyl-coenzyme A
992-67-6
succinyl-coenzyme A
BSI27HW5EQ
Lysine
K3Z4F929H6
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
100941Subventions
Organisme : NHLBI NIH HHS
ID : T32 HL007439
Pays : United States
Organisme : NIGMS NIH HHS
ID : R01 GM132261
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA174761
Pays : United States
Organisme : NCI NIH HHS
ID : R01 CA228339
Pays : United States
Organisme : NIGMS NIH HHS
ID : T32 GM007170
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK116005
Pays : United States
Informations de copyright
Copyright © 2020 The Author(s). Published by Elsevier GmbH.. All rights reserved.
Références
Nat Cell Biol. 2019 Jan;21(1):85-93
pubmed: 30602764
J Biol Chem. 2007 May 11;282(19):14178-85
pubmed: 17374604
J Inherit Metab Dis. 2014 Sep;37(5):709-14
pubmed: 24531926
Curr Opin Cell Biol. 2015 Apr;33:125-31
pubmed: 25703630
Nat Rev Mol Cell Biol. 2014 Aug;15(8):536-50
pubmed: 25053359
Nature. 2018 Aug;560(7716):102-106
pubmed: 30022159
Chem Res Toxicol. 1998 Jun;11(6):651-8
pubmed: 9625733
Cell Chem Biol. 2017 Jun 22;24(6):673-684.e4
pubmed: 28479296
J Biol Chem. 2005 Nov 18;280(46):38125-32
pubmed: 16141203
Cell Metab. 2014 Apr 1;19(4):605-17
pubmed: 24703693
J Neurosci Res. 2017 Nov;95(11):2244-2252
pubmed: 28631845
Eur J Biochem. 2004 Feb;271(3):462-9
pubmed: 14728673
J Biol Chem. 2007 Dec 21;282(51):37256-65
pubmed: 17951578
Epigenetics. 2009 Aug 16;4(6):399-403
pubmed: 19755853
Mol Cell Proteomics. 2011 Dec;10(12):M111.012658
pubmed: 21908771
Trends Biochem Sci. 2018 Jan;43(1):61-74
pubmed: 29174173
J Biol Chem. 1957 Dec;229(2):965-79
pubmed: 13502357
Cell Discov. 2017 May 23;3:17016
pubmed: 28580166
Orig Life Evol Biosph. 2011 Oct;41(5):399-412
pubmed: 21728078
Biochimie. 2014 Mar;98:45-55
pubmed: 24389458
Proc Natl Acad Sci U S A. 2018 Mar 6;115(10):2365-2370
pubmed: 29463709
Gut. 2015 Nov;64(11):1744-54
pubmed: 25500202
Metallomics. 2017 Sep 20;9(9):1193-1203
pubmed: 28795723
Biochim Biophys Acta. 2013 Jun;1832(6):773-9
pubmed: 23485643
J Inherit Metab Dis. 2017 Sep;40(5):641-655
pubmed: 28516284
Cell Metab. 2019 Sep 3;30(3):594-606.e3
pubmed: 31257152
Chem Rev. 2018 Feb 28;118(4):1460-1494
pubmed: 29272116
Nat Chem Biol. 2016 Jan;12(1):15-21
pubmed: 26571352
Mol Cell. 2015 Apr 16;58(2):203-15
pubmed: 25818647
J Am Chem Soc. 2001 Nov 7;123(44):11004-9
pubmed: 11686705
Front Cell Dev Biol. 2016 Jan 28;3:83
pubmed: 26858947
Acta Crystallogr D Struct Biol. 2016 Jul;72(Pt 7):841-8
pubmed: 27377381
Proc Natl Acad Sci U S A. 2008 Feb 12;105(6):2117-22
pubmed: 18252821
Science. 2011 Nov 11;334(6057):806-9
pubmed: 22076378
Clin Chem. 2007 Dec;53(12):2169-76
pubmed: 17951291
J Appl Microbiol. 2019 Nov;127(5):1546-1555
pubmed: 31325215
Biochem Res Int. 2017;2017:8529404
pubmed: 29225971
Biochim Biophys Acta. 2011 Sep;1811(9):498-507
pubmed: 21683154
Biochim Biophys Acta. 2007 Apr;1771(4):533-43
pubmed: 17321204
PLoS One. 2015 Mar 11;10(3):e0116587
pubmed: 25760036
J Biol Chem. 2013 Oct 4;288(40):29036-45
pubmed: 23946487
Nature. 2019 Oct;574(7779):492-493
pubmed: 31645737
J Clin Invest. 1999 Apr;103(8):1159-68
pubmed: 10207168
Cell. 2017 Feb 9;168(4):657-669
pubmed: 28187287
Nat Cell Biol. 2000 Jan;2(1):51-3
pubmed: 10620807
J Biol Chem. 2016 Jun 3;291(23):12161-70
pubmed: 27002151
Cell Mol Life Sci. 2005 Aug;62(16):1784-803
pubmed: 15968460
Chembiochem. 2008 Mar 3;9(4):499-503
pubmed: 18247445
Chem Rev. 2015 Mar 25;115(6):2376-418
pubmed: 25688442
ACS Chem Biol. 2015 Jan 16;10(1):122-8
pubmed: 25555129
Mol Cell. 2019 May 16;74(4):844-857.e7
pubmed: 31000437
Mol Cell. 2006 Jul 21;23(2):207-17
pubmed: 16857587
J Lipid Res. 2007 Dec;48(12):2736-50
pubmed: 17762044
Pediatr Res. 1989 Jan;25(1):38-43
pubmed: 2919115
J Biol Chem. 2009 Nov 20;284(47):32288-95
pubmed: 19801601
Mol Cell. 2016 Apr 21;62(2):194-206
pubmed: 27105115
J Biol Chem. 2007 Oct 12;282(41):30239-45
pubmed: 17684016
Mol Cell Proteomics. 2017 Jul;16(7):1324-1334
pubmed: 28450421
J Biol Chem. 1959 Oct;234:2544-7
pubmed: 13833535
Anal Biochem. 1976 May 7;72:614-22
pubmed: 7972
Elife. 2014 Nov 04;3:
pubmed: 25369635
Angew Chem Int Ed Engl. 2010 Sep 10;49(38):6768-72
pubmed: 20715035
Cell Metab. 2018 Mar 6;27(3):497-512
pubmed: 29514063
Crit Rev Toxicol. 2010 Sep;40(8):697-727
pubmed: 20722584
Nat Commun. 2017 Oct 26;8(1):1141
pubmed: 29070843
J Neurochem. 2015 Jul;134(1):86-96
pubmed: 25772995
Annu Rev Nutr. 1984;4:409-54
pubmed: 6380539
Nat Chem Biol. 2014 May;10(5):365-70
pubmed: 24681537
Mol Cell. 2018 Aug 2;71(3):398-408
pubmed: 30075141
Cell Metab. 2015 Jun 2;21(6):805-21
pubmed: 26039447
Free Radic Biol Med. 2016 Nov;100:164-174
pubmed: 27164052
Mol Cell Proteomics. 2009 Jan;8(1):45-52
pubmed: 18753126
Am J Physiol Renal Physiol. 2005 Apr;288(4):F792-9
pubmed: 15561973
Cell Metab. 2016 Jul 12;24(1):151-7
pubmed: 27411015
Cell Metab. 2017 Apr 4;25(4):823-837.e8
pubmed: 28380375
Nat Chem Biol. 2011 Jan;7(1):58-63
pubmed: 21151122
Nat Chem Biol. 2016 Jun;12(6):396-8
pubmed: 27089029
Mol Cell. 2012 Nov 30;48(4):612-26
pubmed: 23063526
Anal Chem. 2019 Oct 1;91(19):12336-12343
pubmed: 31503451
Cell Rep. 2018 Feb 6;22(6):1365-1373
pubmed: 29425493
Nature. 2013 Oct 24;502(7472):489-98
pubmed: 24153302
Clin Chim Acta. 2014 Feb 15;429:30-3
pubmed: 24269713
J Inherit Metab Dis. 2010 Oct;33(5):469-77
pubmed: 20195903
Sci Rep. 2017 Oct 26;7(1):14132
pubmed: 29074956
Mol Genet Metab. 2012 Dec;107(4):679-83
pubmed: 23117082
J Biol Chem. 2018 Mar 2;293(9):3410-3420
pubmed: 29321206
PLoS One. 2015 Dec 28;10(12):e0145850
pubmed: 26710334
Scand J Gastroenterol. 1987 Aug;22(6):672-6
pubmed: 3659829
J Proteome Res. 2019 Apr 5;18(4):1513-1531
pubmed: 30644754
J Biol Chem. 1987 May 25;262(15):7132-4
pubmed: 2884217
PLoS One. 2018 Dec 26;13(12):e0208973
pubmed: 30586434
Compr Physiol. 2017 Dec 12;8(1):299-314
pubmed: 29357130
J Cell Physiol. 2016 Aug;231(8):1804-13
pubmed: 26661480
Sci Rep. 2015 Oct 09;5:14843
pubmed: 26450397
Dis Model Mech. 2016 Jun 1;9(6):633-45
pubmed: 27125278
Anal Biochem. 2002 Jul 15;306(2):283-9
pubmed: 12123667
Nat Metab. 2019 Jan;1:16-33
pubmed: 31032474
J Lipid Res. 2006 Jul;47(7):1386-98
pubmed: 16582421
Mol Genet Metab. 2012 Jan;105(1):5-9
pubmed: 21986446
Mol Cell. 2013 Jun 27;50(6):919-30
pubmed: 23806337
Comp Biochem Physiol B. 1989;92(2):227-31
pubmed: 2647392
Biores Open Access. 2012 Aug;1(4):192-8
pubmed: 23514803
Cell. 2016 Jun 16;165(7):1708-1720
pubmed: 27264604
J Biol Chem. 2000 Aug 25;275(34):26458-66
pubmed: 10843999
Cell Metab. 2014 Aug 5;20(2):306-319
pubmed: 24998913
Annu Rev Nutr. 2014;34:1-30
pubmed: 24819326
Biochemistry. 2006 Dec 26;45(51):15853-61
pubmed: 17176108
Eur J Biochem. 1972 Apr 24;26(4):587-94
pubmed: 5025933
Am J Physiol. 1996 Oct;271(4 Pt 1):E788-99
pubmed: 8897869
Mol Cell Proteomics. 2015 Nov;14(11):3056-71
pubmed: 26320211
Science. 2009 May 22;324(5930):1076-80
pubmed: 19461003
Nat Chem Biol. 2016 Dec;12(12):1111-1118
pubmed: 27775714
ACS Chem Biol. 2015 Sep 18;10(9):2034-47
pubmed: 26083674
Am J Physiol Cell Physiol. 2000 May;278(5):C1019-30
pubmed: 10794676
Cell Rep. 2017 Nov 7;21(6):1521-1533
pubmed: 29117558
Nat Rev Immunol. 2016 Sep;16(9):553-65
pubmed: 27396447
OMICS. 2012 Nov;16(11):612-20
pubmed: 23095112
Sci Transl Med. 2015 Apr 29;7(285):285ra62
pubmed: 25925681
Cell Res. 2016 May;26(5):629-32
pubmed: 27103431
Nature. 2020 Jan;577(7791):519-525
pubmed: 31942073
Gut. 1987 Oct;28(10):1221-7
pubmed: 3678950
Mol Cell. 2015 Jul 16;59(2):321-32
pubmed: 26073543
Structure. 2015 Oct 6;23(10):1801-1814
pubmed: 26365797
Mol Cell Proteomics. 2015 Sep;14(9):2308-15
pubmed: 25717114
Nat Med. 2019 Jul;25(7):1104-1109
pubmed: 31235964
Nature. 2017 Dec 14;552(7684):273-277
pubmed: 29211711
Biochim Biophys Acta. 1970 Aug 8;213(2):513-22
pubmed: 5534125
Cell Metab. 2017 Feb 7;25(2):262-284
pubmed: 28178565
Nat Commun. 2016 Jul 20;7:12235
pubmed: 27436229
J Clin Invest. 2012 Jun;122(6):1958-9
pubmed: 22833869
Nature. 2017 Nov 2;551(7678):115-118
pubmed: 29045397
Mol Cell Proteomics. 2013 Dec;12(12):3509-20
pubmed: 24176774
J Proteome Res. 2009 Feb;8(2):900-6
pubmed: 19113941
J Lipid Res. 2013 Sep;54(9):2325-40
pubmed: 23821742
Cell Chem Biol. 2017 Feb 16;24(2):231-242
pubmed: 28163016
J Biol Chem. 2017 Feb 24;292(8):3312-3322
pubmed: 28077572
Nat Chem Biol. 2018 Nov;14(11):1021-1031
pubmed: 30327559
Cell. 2011 Sep 16;146(6):1016-28
pubmed: 21925322
Int J Obes (Lond). 2010 Jun;34(6):1095-8
pubmed: 20212498
Mol Cell. 2019 Nov 21;76(4):660-675.e9
pubmed: 31542297
Mol Cell. 2018 May 17;70(4):663-678.e6
pubmed: 29775581
Mol Cell. 2016 Apr 21;62(2):169-180
pubmed: 27105113
Pflugers Arch. 2004 Feb;447(5):689-709
pubmed: 14598172
Sci Transl Med. 2019 Apr 24;11(489):
pubmed: 31019023
Nat Chem Biol. 2017 Jan;13(1):21-29
pubmed: 27820805
Mol Cell Proteomics. 2007 May;6(5):812-9
pubmed: 17267393
Front Immunol. 2019 Mar 11;10:277
pubmed: 30915065
Cell Chem Biol. 2020 Feb 20;27(2):206-213.e6
pubmed: 31767537
Cell. 2016 Jun 2;165(6):1332-1345
pubmed: 27259147
J Biol Chem. 1998 Sep 18;273(38):24754-9
pubmed: 9733776
Clin Chem. 2001 Nov;47(11):1993-2002
pubmed: 11673368
Cell Metab. 2013 Dec 3;18(6):920-33
pubmed: 24315375
Cell Res. 2017 Jul;27(7):898-915
pubmed: 28497810
Nature. 2019 Oct;574(7779):575-580
pubmed: 31645732
PLoS One. 2013 Oct 03;8(10):e75998
pubmed: 24098417
Cell Rep. 2019 Feb 5;26(6):1557-1572.e8
pubmed: 30726738
J Biol Chem. 1970 Nov 25;245(22):5993-6002
pubmed: 5484459
iScience. 2018 Apr 27;2:63-75
pubmed: 29888767
Mol Cell Proteomics. 2012 May;11(5):100-7
pubmed: 22389435
Biochim Biophys Acta. 1980 Aug 11;619(2):445-50
pubmed: 7407228
Mol Cell. 2016 Apr 21;62(2):181-193
pubmed: 27105114
Nat Struct Mol Biol. 2017 Dec;24(12):1048-1056
pubmed: 29058708
J Bioenerg Biomembr. 2013 Feb;45(1-2):1-13
pubmed: 23054077
Biochim Biophys Acta. 2012 Sep;1822(9):1397-410
pubmed: 22465940
Nat Commun. 2018 Jan 9;9(1):105
pubmed: 29317660
Mol Cell Proteomics. 2015 Jun;14(6):1489-500
pubmed: 25795660
Cell Metab. 2018 Dec 4;28(6):866-880.e15
pubmed: 30146486
J Biol Chem. 2003 Sep 12;278(37):34959-65
pubmed: 12824185
Cell Discov. 2019 Jul 9;5:35
pubmed: 31636949
J Biochem. 2017 Mar 1;161(3):279-289
pubmed: 28003429
Nature. 1975 Mar 13;254(5496):109-14
pubmed: 1117994
Mol Cell. 2017 Sep 7;67(5):853-866.e5
pubmed: 28803779
Biochim Biophys Acta. 2012 Sep;1822(9):1374-86
pubmed: 22206997
J Biol Chem. 1977 Jan 25;252(2):504-7
pubmed: 13070
Nat Rev Mol Cell Biol. 2017 Feb;18(2):90-101
pubmed: 27924077
Proc Natl Acad Sci U S A. 2016 Apr 19;113(16):4320-5
pubmed: 27051063
Am J Hypertens. 2007 Nov;20(11):1209-15
pubmed: 17954369