Dynamic Spatial Formation and Distribution of Intrinsically Disordered Protein Droplets in Macromolecularly Crowded Protocells.


Journal

Angewandte Chemie (International ed. in English)
ISSN: 1521-3773
Titre abrégé: Angew Chem Int Ed Engl
Pays: Germany
ID NLM: 0370543

Informations de publication

Date de publication:
26 06 2020
Historique:
received: 05 02 2020
revised: 23 03 2020
pubmed: 25 3 2020
medline: 18 3 2021
entrez: 25 3 2020
Statut: ppublish

Résumé

Elastin-like polypeptides (ELPs) have been proposed as a simple model of intrinsically disordered proteins (IDPs) which can form membraneless organelles by liquid-liquid phase separation (LLPS) in cells. Herein, the behavior of fluorescently labeled ELP is studied in cytomimetic aqueous two-phase system (ATPS) encapsulated protocells that are formed using microfluidics, which enabled confinement, changes in temperature, and statistical analysis. The spatial organization of ELP could be observed in the ATPS. Furthermore, changes in temperature triggered the dynamic formation and distribution of ELP-rich droplets within the ATPS, resulting from changes in conformation. Proteins were encapsulated along with ELP in the synthetic protocells and distinct partitioning properties of these proteins and ELP in the ATPS were observed. Therefore, the ability of ELP to coacervate with temperature can be maintained inside a cell-mimicking system.

Identifiants

pubmed: 32207864
doi: 10.1002/anie.202001868
doi:

Substances chimiques

Intrinsically Disordered Proteins 0
Macromolecular Substances 0
Polyethylene Glycols 3WJQ0SDW1A

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

11028-11036

Informations de copyright

© 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

Références

J. C. Holthuis, C. Ungermann, Biol. Chem. 2013, 394, 151-161.
M. W. Gray, Trends Genet. 1989, 5, 294-299.
 
G. Boulay, G. J. Sandoval, N. Riggi, S. Iyer, R. Buisson, B. Naigles, M. E. Awad, S. Rengarajan, A. Volorio, M. J. McBride, Cell 2017, 171, 163-178;
P. Li, S. Banjade, H.-C. Cheng, S. Kim, B. Chen, L. Guo, M. Llaguno, J. V. Hollingsworth, D. S. King, S. F. Banani, P. S. Russo, Q.-X. Jiang, B. T. Nixon, M. K. Rosen, Nature 2012, 483, 336-340;
J. R. Wheeler, T. Matheny, S. Jain, R. Abrisch, R. Parker, eLife 2016, 5, e18413-e18438;
X. Su, J. A. Ditlev, E. Hui, W. Xing, S. Banjade, J. Okrut, D. S. King, J. Taunton, M. K. Rosen, R. D. Vale, Science 2016, 352, 595-599.
Z. Feng, X. Chen, X. Wu, M. Zhang, J. Biol. Chem. 2019, 294, 14823-14835.
N. Martin, ChemBioChem 2019, 20, 2553-2568.
 
W. M. Aumiller, C. D. Keating, Nat. Chem. 2016, 8, 129-137;
N. Martin, L.-F. Tian, D. Spencer, A. Coutable-Pennarun, J. L. R. Anderson, S. Mann, Angew. Chem. Int. Ed. 2019, 58, 14594-14598;
Angew. Chem. 2019, 131, 14736-14740;
A. T. Rowland, D. N. Cacace, N. Pulati, M. L. Gulley, C. D. Keating, Chem. Mater. 2019, 31, 10243-10255.
C. P. Brangwynne, C. R. Eckmann, D. S. Courson, A. Rybarska, C. Hoege, J. Gharakhani, F. Jülicher, A. A. Hyman, Science 2009, 324, 1729-1732.
 
E. Dolgin, Nature 2018, 555, 300-302;
S. Boeynaems, S. Alberti, N. L. Fawzi, T. Mittag, M. Polymenidou, F. Rousseau, J. Schymkowitz, J. Shorter, B. Wolozin, L. Van Den Bosch, Trends Cell Biol. 2018, 28, 420-435;
J. R. Vieregg, M. Lueckheide, A. B. Marciel, L. Leon, A. J. Bologna, J. R. Rivera, M. V. Tirrell, J. Am. Chem. Soc. 2018, 140, 1632-1638.
 
P. E. Wright, H. J. Dyson, Nat. Rev. Mol. Cell Biol. 2015, 16, 18-29;
V. N. Uversky, Curr. Opin. Struct. Biol. 2017, 44, 18-30;
V. N. Uversky, I. M. Kuznetsova, K. K. Turoverov, B. Zaslavsky, FEBS Lett. 2015, 589, 15-22;
M. Dzuricky, S. Roberts, A. Chilkoti, Biochemistry 2018, 57, 2405-2414;
B. S. Schuster, E. H. Reed, R. Parthasarathy, C. N. Jahnke, R. M. Caldwell, J. G. Bermudes, H. Ramage, M. C. Good, D. A. Hammer, Nat. Commun. 2018, 9, 2985-2997.
A. K. Dunker, J. D. Lawson, C. J. Brown, R. M. Williams, P. Romero, J. S. Oh, C. J. Oldfield, A. M. Campen, C. M. Ratliff, K. W. Hipps, J. Mol. Graphics Modell. 2001, 19, 26-59.
 
S. R. MacEwan, I. Weitzhandler, I. Hoffmann, J. Genzer, M. Gradzielski, A. Chilkoti, Biomacromolecules 2017, 18, 599-609;
S. C. Weber, C. P. Brangwynne, Cell 2012, 149, 1188-1191.
 
J. R. Kramer, R. Petitdemange, L. Bataille, K. Bathany, A.-L. Wirotius, B. Garbay, T. J. Deming, E. Garanger, S. Lecommandoux, ACS Macro Lett. 2015, 4, 1283-1286;
D. E. Meyer, A. Chilkoti, Biomacromolecules 2004, 5, 846-851;
V. N. Uversky, Adv. Colloid Interface Sci. 2017, 239, 97-114.
S. Roberts, M. Dzuricky, A. Chilkoti, FEBS Lett. 2015, 589, 2477-2486.
 
J. R. Simon, N. J. Carroll, M. Rubinstein, A. Chilkoti, G. P. López, Nat. Chem. 2017, 9, 509-515;
J. R. Simon, S. A. Eghtesadi, M. Dzuricky, L. You, A. Chilkoti, Mol. Cell 2019, 75, 66-75;
S. A. Costa, J. R. Simon, M. Amiram, L. Tang, S. Zauscher, E. M. Brustad, F. J. Isaacs, A. Chilkoti, Adv. Mater. 2018, 30, 1704878.
R. J. Ellis, Trends Biochem. Sci. 2001, 26, 597-604.
 
C. D. Keating, Acc. Chem. Res. 2012, 45, 2114-2124;
A. G. Teixeira, R. Agarwal, K. R. Ko, J. Grant-Burt, B. M. Leung, J. P. Frampton, Adv. Healthcare Mater. 2018, 7, 1701036;
Y. Chao, H. C. Shum, Chem. Soc. Rev. 2020, 49, 114-142.
P. Å. Albertsson, Partition of cell particles and macromolecules, Wiley-VCH, Weinheim, 1986.
M. R. Helfrich, L. K. Mangeney-Slavin, M. S. Long, K. Y. Djoko, C. D. Keating, J. Am. Chem. Soc. 2002, 124, 13374-13375.
R. Petitdemange, E. Garanger, L. Bataille, K. Bathany, B. Garbay, T. J. Deming, S. Lecommandoux, Bioconjugate Chem. 2017, 28, 1403-1412.
D. E. Meyer, A. Chilkoti, Biomacromolecules 2002, 3, 357-367.
 
D. E. Meyer, A. Chilkoti, Nat. Biotechnol. 1999, 17, 1112-1115;
R. Petitdemange, E. Garanger, L. Bataille, W. Dieryck, K. Bathany, B. Garbay, T. J. Deming, S. Lecommandoux, Biomacromolecules 2017, 18, 544-550.
 
N. Nakatani, H. Sakuta, M. Hayashi, S. Tanaka, K. Takiguchi, K. Tsumoto, K. Yoshikawa, ChemBioChem 2018, 19, 1370-1374;
L. Breydo, L. M. Mikheeva, P. P. Madeira, B. Y. Zaslavsky, V. N. Uversky, Mol. Biosyst. 2013, 9, 3068-3079.
S. An, R. Kumar, E. D. Sheets, S. J. Benkovic, Science 2008, 320, 103-106.
E. Gomes, J. Shorter, J. Biol. Chem. 2019, 294, 7115-7127.
 
S. D. Hann, T. H. R. Niepa, K. J. Stebe, D. Lee, Langmuir 2016, 8, 25603-25611;
D. C. Dewey, C. A. Strulson, D. N. Cacace, P. C. Bevilacqua, C. D. Keating, Nat. Commun. 2014, 5, 4670-4679.
J. B. Sumner, N. Gralën, I.-B. Eriksson-Quensel, Science 1938, 87, 395-396.
L. Elling, M.-R. Kula, E. Hadas, E. Katchalski-Katzir, Anal. Biochem. 1991, 192, 74-77.

Auteurs

Hang Zhao (H)

Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, 33600, Pessac, France.

Vusala Ibrahimova (V)

Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, 33600, Pessac, France.

Elisabeth Garanger (E)

Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, 33600, Pessac, France.

Sébastien Lecommandoux (S)

Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, 33600, Pessac, France.

Articles similaires

Detailing organelle division and segregation in Plasmodium falciparum.

Julie M J Verhoef, Cas Boshoven, Felix Evers et al.
1.00
Plasmodium falciparum Mitochondria Apicoplasts Humans Animals
1.00
Saccharomyces cerevisiae Lysine Cell Nucleolus RNA, Ribosomal Saccharomyces cerevisiae Proteins
Calcium Carbonate Sand Powders Construction Materials Materials Testing

Classifications MeSH