The dual life of disordered lysine-rich domains of snoRNPs in rRNA modification and nucleolar compaction.
Saccharomyces cerevisiae
/ metabolism
Lysine
/ metabolism
Cell Nucleolus
/ metabolism
RNA, Ribosomal
/ metabolism
Saccharomyces cerevisiae Proteins
/ metabolism
Ribonucleoproteins, Small Nucleolar
/ metabolism
Ribosomes
/ metabolism
Protein Domains
RNA Polymerase I
/ metabolism
Intrinsically Disordered Proteins
/ metabolism
Humans
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
31 Oct 2024
31 Oct 2024
Historique:
received:
12
01
2024
accepted:
22
10
2024
medline:
1
11
2024
pubmed:
1
11
2024
entrez:
1
11
2024
Statut:
epublish
Résumé
Intrinsically disordered regions (IDRs) are highly enriched in the nucleolar proteome but their physiological role in ribosome assembly remains poorly understood. Our study reveals the functional plasticity of the extremely abundant lysine-rich IDRs of small nucleolar ribonucleoprotein particles (snoRNPs) from protists to mammalian cells. We show in Saccharomyces cerevisiae that the electrostatic properties of this lysine-rich IDR, the KKE/D domain, promote snoRNP accumulation in the vicinity of nascent rRNAs, facilitating their modification. Under stress conditions reducing the rate of ribosome assembly, they are essential for nucleolar compaction and sequestration of key early-acting ribosome biogenesis factors, including RNA polymerase I, owing to their self-interaction capacity in a latent, non-rRNA-associated state. We propose that such functional plasticity of these lysine-rich IDRs may represent an ancestral eukaryotic regulatory mechanism, explaining how nucleolar morphology is continuously adapted to rRNA production levels.
Identifiants
pubmed: 39482307
doi: 10.1038/s41467-024-53805-1
pii: 10.1038/s41467-024-53805-1
doi:
Substances chimiques
Lysine
K3Z4F929H6
RNA, Ribosomal
0
Saccharomyces cerevisiae Proteins
0
Ribonucleoproteins, Small Nucleolar
0
RNA Polymerase I
EC 2.7.7.6
Intrinsically Disordered Proteins
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
9415Subventions
Organisme : Agence Nationale de la Recherche (French National Research Agency)
ID : ANR-21-CE12-0008-01
Informations de copyright
© 2024. The Author(s).
Références
Peña, C., Hurt, E. & Panse, V. G. Eukaryotic ribosome assembly, transport and quality control. Nat. Struct. Mol. Biol. 24, 689–699 (2017).
pubmed: 28880863
doi: 10.1038/nsmb.3454
Klinge, S. & Woolford, J. L. Ribosome assembly coming into focus. Nat. Rev. Mol. Cell Biol. 20, 116–131 (2019).
pubmed: 30467428
pmcid: 7725133
doi: 10.1038/s41580-018-0078-y
Henras, A. K., Plisson-Chastang, C., O’Donohue, M.-F., Chakraborty, A. & Gleizes, P.-E. An overview of pre-ribosomal RNA processing in eukaryotes. Wiley Interdiscip. Rev. RNA 6, 225–242 (2015).
pubmed: 25346433
doi: 10.1002/wrna.1269
Lafontaine, D. L. J., Riback, J. A., Bascetin, R. & Brangwynne, C. P. The nucleolus as a multiphase liquid condensate. Nat. Rev. Mol. Cell Biol. 22, 165–182 (2021).
pubmed: 32873929
doi: 10.1038/s41580-020-0272-6
Hernandez-Verdun, D. The nucleolus: a model for the organization of nuclear functions. Histochem. Cell Biol. 126, 135–148 (2006).
pubmed: 16835752
doi: 10.1007/s00418-006-0212-3
Grummt, I. The nucleolus—guardian of cellular homeostasis and genome integrity. Chromosoma 122, 487–497 (2013).
pubmed: 24022641
doi: 10.1007/s00412-013-0430-0
Frottin, F. et al. The nucleolus functions as a phase-separated protein quality control compartment. Science 365, 342–347 (2019).
pubmed: 31296649
doi: 10.1126/science.aaw9157
Léger-Silvestre, I., Trumtel, S., Noaillac-Depeyre, J. & Gas, N. Functional compartmentalization of the nucleus in the budding yeast Saccharomyces cerevisiae. Chromosoma 108, 103–113 (1999).
pubmed: 10382072
doi: 10.1007/s004120050357
Sirri, V., Urcuqui-Inchima, S., Roussel, P. & Hernandez-Verdun, D. Nucleolus: the fascinating nuclear body. Histochem. Cell Biol. 129, 13–31 (2008).
pubmed: 18046571
doi: 10.1007/s00418-007-0359-6
Henras, A. K., Plisson-Chastang, C., Humbert, O., Romeo, Y. & Henry, Y. Synthesis, function, and heterogeneity of snoRNA-guided posttranscriptional nucleoside modifications in eukaryotic ribosomal RNAs. Enzymes 41, 169–213 (2017).
pubmed: 28601222
doi: 10.1016/bs.enz.2017.03.007
Meier, U. T. The daunting task of modifying ribosomal RNA. RNA 28, 1555–1557 (2022).
pubmed: 36109161
pmcid: 9670813
Sloan, K. E. et al. Tuning the ribosome: the influence of rRNA modification on eukaryotic ribosome biogenesis and function. RNA Biol. 14, 1138–1152 (2017).
pubmed: 27911188
doi: 10.1080/15476286.2016.1259781
Chen, Y.-L. et al. The telomerase inhibitor Gno1p/PINX1 activates the helicase Prp43p during ribosome biogenesis. Nucleic Acids Res. 42, 7330–7345 (2014).
pubmed: 24823796
pmcid: 4066782
doi: 10.1093/nar/gku357
Aquino, G. R. R. et al. RNA helicase-mediated regulation of snoRNP dynamics on pre-ribosomes and rRNA 2’-O-methylation. Nucleic Acids Res. https://doi.org/10.1093/nar/gkab159 (2021).
Bailey, A. D. et al. Concerted modification of nucleotides at functional centers of the ribosome revealed by single-molecule RNA modification profiling. Elife 11, e76562 (2022).
Guillen-Chable, F., Bayona, A., Rodríguez-Zapata, L. C. & Castano, E. Phase separation of intrinsically disordered nucleolar proteins relate to localization and function. Int. J. Mol. Sci. 22, 13095 (2021).
LaPeruta, A. J., Micic, J. & Woolford, J. L. Additional principles that govern the release of pre-ribosomes from the nucleolus into the nucleoplasm in yeast. Nucleic Acids Res. https://doi.org/10.1093/nar/gkac430 (2022).
Uversky, V. N. Protein intrinsic disorder and structure-function continuum. Prog. Mol. Biol. Transl. Sci. 166, 1–17 (2019).
pubmed: 31521229
doi: 10.1016/bs.pmbts.2019.05.003
Mitrea, D. M. et al. Self-interaction of NPM1 modulates multiple mechanisms of liquid-liquid phase separation. Nat. Commun. 9, 842 (2018).
pubmed: 29483575
pmcid: 5827731
doi: 10.1038/s41467-018-03255-3
Tartakoff, A. et al. The dual nature of the nucleolus. Genes Dev. 36, 765–769 (2022).
pubmed: 36342833
pmcid: 9480854
doi: 10.1101/gad.349748.122
Feric, M. et al. Coexisting liquid phases underlie nucleolar subcompartments. Cell 165, 1686–1697 (2016).
pubmed: 27212236
doi: 10.1016/j.cell.2016.04.047
Yao, R.-W. et al. Nascent pre-rRNA sorting via phase separation drives the assembly of dense fibrillar components in the human nucleolus. Mol. Cell 76, 767–783.e11 (2019).
pubmed: 31540874
doi: 10.1016/j.molcel.2019.08.014
McSwiggen, D. T., Mir, M., Darzacq, X. & Tjian, R. Evaluating phase separation in live cells: diagnosis, caveats, and functional consequences. Genes Dev. 33, 1619–1634 (2019).
pubmed: 31594803
pmcid: 6942051
doi: 10.1101/gad.331520.119
Das, R. K. & Pappu, R. V. Conformations of intrinsically disordered proteins are influenced by linear sequence distributions of oppositely charged residues. Proc. Natl Acad. Sci. USA 110, 13392–13397 (2013).
pubmed: 23901099
pmcid: 3746876
doi: 10.1073/pnas.1304749110
McBride, A. E., Conboy, A. K., Brown, S. P., Ariyachet, C. & Rutledge, K. L. Specific sequences within arginine-glycine-rich domains affect mRNA-binding protein function. Nucleic Acids Res. 37, 4322–4330 (2009).
pubmed: 19454603
pmcid: 2715232
doi: 10.1093/nar/gkp349
Cloutier, S. C., Ma, W. K., Nguyen, L. T. & Tran, E. J. The DEAD-box RNA helicase Dbp2 connects RNA quality control with repression of aberrant transcription. J. Biol. Chem. 287, 26155–26166 (2012).
pubmed: 22679025
pmcid: 3406699
doi: 10.1074/jbc.M112.383075
Gautier, T., Bergès, T., Tollervey, D. & Hurt, E. Nucleolar KKE/D repeat proteins Nop56p and Nop58p interact with Nop1p and are required for ribosome biogenesis. Mol. Cell. Biol. 17, 7088–7098 (1997).
pubmed: 9372940
pmcid: 232565
doi: 10.1128/MCB.17.12.7088
Winkler, A. A., Bobok, A., Zonneveld, B. J., Steensma, H. Y. & Hooykaas, P. J. The lysine-rich C-terminal repeats of the centromere-binding factor 5 (Cbf5) of Kluyveromyces lactis are not essential for function. Yeast 14, 37–48 (1998).
pubmed: 9483794
doi: 10.1002/(SICI)1097-0061(19980115)14:1<37::AID-YEA198>3.0.CO;2-2
Gadal, O. et al. A34.5, a nonessential component of yeast RNA polymerase I, cooperates with subunit A14 and DNA topoisomerase I to produce a functional rRNA synthesis machine. Mol. Cell. Biol. 17, 1787–1795 (1997).
pubmed: 9121426
pmcid: 232025
doi: 10.1128/MCB.17.4.1787
Albert, B. et al. RNA polymerase I-specific subunits promote polymerase clustering to enhance the rRNA gene transcription cycle. J. Cell Biol. 192, 277–293 (2011).
pubmed: 21263028
pmcid: 3172167
doi: 10.1083/jcb.201006040
Colau, G., Thiry, M., Leduc, V., Bordonné, R. & Lafontaine, D. L. J. The small nucle(ol)ar RNA cap trimethyltransferase is required for ribosome synthesis and intact nucleolar morphology. Mol. Cell. Biol. 24, 7976–7986 (2004).
pubmed: 15340060
pmcid: 515057
doi: 10.1128/MCB.24.18.7976-7986.2004
Robert-Paganin, J. et al. Functional link between DEAH/RHA helicase Prp43 activation and ATP base binding. Nucleic Acids Res. 45, 1539–1552 (2017).
pubmed: 28180308
doi: 10.1093/nar/gkw1233
Wei, T. et al. Small-molecule targeting of RNA polymerase I activates a conserved transcription elongation checkpoint. Cell Rep. 23, 404–414 (2018).
pubmed: 29642000
pmcid: 6016085
doi: 10.1016/j.celrep.2018.03.066
Marchand, V., Blanloeil-Oillo, F., Helm, M. & Motorin, Y. Illumina-based RiboMethSeq approach for mapping of 2’-O-Me residues in RNA. Nucleic Acids Res. 44, e135 (2016).
pubmed: 27302133
pmcid: 5027498
doi: 10.1093/nar/gkw547
Marchand, V. et al. HydraPsiSeq: a method for systematic and quantitative mapping of pseudouridines in RNA. Nucleic Acids Res. 48, e110 (2020).
pubmed: 32976574
pmcid: 7641733
doi: 10.1093/nar/gkaa769
Li, S. et al. Reconstitution and structural analysis of the yeast box H/ACA RNA-guided pseudouridine synthase. Genes Dev. 25, 2409–2421 (2011).
pubmed: 22085967
pmcid: 3222906
doi: 10.1101/gad.175299.111
Bohnsack, M. T. et al. Prp43 Bound at Different Sites on the Pre-rRNA Performs Distinct Functions in Ribosome Synthesis. Mol. Cell 36, 583–592 (2009).
Weaver, P. L., Sun, C. & Chang, T. H. Dbp3p, a putative RNA helicase in Saccharomyces cerevisiae, is required for efficient pre-rRNA processing predominantly at site A3. Mol. Cell. Biol. 17, 1354–1365 (1997).
pubmed: 9032262
pmcid: 231860
doi: 10.1128/MCB.17.3.1354
Normand, C., Berthaud, M., Gadal, O. & Léger-Silvestre, I. Correlative light and electron microscopy of nucleolar transcription in Saccharomyces cerevisiae. Methods Mol. Biol. 1455, 29–40 (2016).
pubmed: 27576708
doi: 10.1007/978-1-4939-3792-9_3
Branon, T. C. et al. Efficient proximity labeling in living cells and organisms with TurboID. Nat. Biotechnol. 36, 880–887 (2018).
pubmed: 30125270
doi: 10.1038/nbt.4201
Hierlmeier, T. et al. Rrp5p, Noc1p and Noc2p form a protein module which is part of early large ribosomal subunit precursors in S. cerevisiae. Nucleic Acids Res. 41, 1191–1210 (2013).
pubmed: 23209026
doi: 10.1093/nar/gks1056
Nogi, Y., Yano, R. & Nomura, M. Synthesis of large rRNAs by RNA polymerase II in mutants of Saccharomyces cerevisiae defective in RNA polymerase I. Proc. Natl Acad. Sci. USA 88, 3962–3966 (1991).
pubmed: 2023944
pmcid: 51573
doi: 10.1073/pnas.88.9.3962
Vu, L., Siddiqi, I., Lee, B. S., Josaitis, C. A. & Nomura, M. RNA polymerase switch in transcription of yeast rDNA: role of transcription factor UAF (upstream activation factor) in silencing rDNA transcription by RNA polymerase II. Proc. Natl Acad. Sci. USA 96, 4390–4395 (1999).
pubmed: 10200272
pmcid: 16342
doi: 10.1073/pnas.96.8.4390
Beckouet, F. et al. Two RNA polymerase I subunits control the binding and release of Rrn3 during transcription. Mol. Cell. Biol. 28, 1596–1605 (2008).
Tsang, C. K., Bertram, P. G., Ai, W., Drenan, R. & Zheng, X. F. S. Chromatin-mediated regulation of nucleolar structure and RNA Pol I localization by TOR. EMBO J. 22, 6045–6056 (2003).
pubmed: 14609951
pmcid: 275436
doi: 10.1093/emboj/cdg578
Ha, C. W., Sung, M.-K. & Huh, W.-K. Nsi1 plays a significant role in the silencing of ribosomal DNA in Saccharomyces cerevisiae. Nucleic Acids Res. 40, 4892–4903 (2012).
pubmed: 22362748
pmcid: 3367210
doi: 10.1093/nar/gks188
Tartakoff, A. M. et al. The nucleolus as a polarized coaxial cable in which the rDNA axis is surrounded by dynamic subunit-specific phases. Curr. Biol. 31, 2507–2519.e4 (2021).
pubmed: 33862007
pmcid: 8222187
doi: 10.1016/j.cub.2021.03.041
De Virgilio, C. & Loewith, R. Cell growth control: little eukaryotes make big contributions. Oncogene 25, 6392–6415 (2006).
pubmed: 17041625
doi: 10.1038/sj.onc.1209884
Riback, J. A. et al. Composition-dependent thermodynamics of intracellular phase separation. Nature 581, 209–214 (2020).
pubmed: 32405004
pmcid: 7733533
doi: 10.1038/s41586-020-2256-2
Ruff, K. M., Dar, F. & Pappu, R. V. Ligand effects on phase separation of multivalent macromolecules. Proc. Natl. Acad. Sci. USA 118, e2017184118 (2021).
Schäfer, T., Strauss, D., Petfalski, E., Tollervey, D. & Hurt, E. The path from nucleolar 90S to cytoplasmic 40S pre-ribosomes. EMBO J. 22, 1370–1380 (2003).
pubmed: 12628929
pmcid: 151049
doi: 10.1093/emboj/cdg121
Matos-Perdomo, E. & Machín, F. Nucleolar and ribosomal DNA structure under stress: yeast lessons for aging and cancer. Cells 8, 779 (2019).
Boulon, S., Westman, B. J., Hutten, S., Boisvert, F.-M. & Lamond, A. I. The nucleolus under stress. Mol. Cell 40, 216–227 (2010).
pubmed: 20965417
pmcid: 2987465
doi: 10.1016/j.molcel.2010.09.024
van Sluis, M. & McStay, B. Nucleolar reorganization in response to rDNA damage. Curr. Opin. Cell Biol. 46, 81–86 (2017).
pubmed: 28431265
doi: 10.1016/j.ceb.2017.03.004
King, M. R., Ruff, K. M. & Pappu, R. V. Emergent microenvironments of nucleoli. Nucleus 15, 2319957 (2024).
pubmed: 38443761
pmcid: 10936679
doi: 10.1080/19491034.2024.2319957
King, M. R. et al. Macromolecular condensation organizes nucleolar sub-phases to set up a pH gradient. Cell 187, 1889–1906.e24 (2024).
pubmed: 38503281
doi: 10.1016/j.cell.2024.02.029
James, P., Halladay, J. & Craig, E. A. Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics 144, 1425–1436 (1996).
Longtine, M. S. et al. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14, 953–961 (1998).
pubmed: 9717241
doi: 10.1002/(SICI)1097-0061(199807)14:10<953::AID-YEA293>3.0.CO;2-U
Pichot, F. et al. Holistic optimization of bioinformatic analysis pipeline for detection and quantification of 2’-O-methylations in RNA by RiboMethSeq. Front. Genet. 11, 38 (2020).
pubmed: 32117451
pmcid: 7031861
doi: 10.3389/fgene.2020.00038
Pichot, F., Marchand, V., Helm, M. & Motorin, Y. Data analysis pipeline for detection and quantification of pseudouridine (ψ) in RNA by hydrapsiseq. Methods Mol. Biol. 2624, 207–223 (2023).
pubmed: 36723818
doi: 10.1007/978-1-0716-2962-8_14
Marchand, V., Bourguignon-Igel, V., Helm, M. & Motorin, Y. Analysis of pseudouridines and other RNA modifications using HydraPsiSeq protocol. Methods 203, 383–391 (2022).
pubmed: 34481083
doi: 10.1016/j.ymeth.2021.08.008
Rappsilber, J., Mann, M. & Ishihama, Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat. Protoc. 2, 1896–1906 (2007).
pubmed: 17703201
doi: 10.1038/nprot.2007.261
Tyanova, S., Temu, T. & Cox, J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat. Protoc. 11, 2301–2319 (2016).
pubmed: 27809316
doi: 10.1038/nprot.2016.136
Zarin, T. et al. Identifying molecular features that are associated with biological function of intrinsically disordered protein regions. Elife 10, e60220 (2021).
Holehouse, A. S., Das, R. K., Ahad, J. N., Richardson, M. O. G. & Pappu, R. V. CIDER: resources to analyze sequence-ensemble relationships of intrinsically disordered proteins. Biophys. J. 112, 16–21 (2017).
pubmed: 28076807
pmcid: 5232785
doi: 10.1016/j.bpj.2016.11.3200
Ho, B., Baryshnikova, A. & Brown, G. W. Unification of protein abundance datasets yields a quantitative Saccharomyces cerevisiae proteome. Cell Syst. 6, 192–205.e3 (2018).
pubmed: 29361465
doi: 10.1016/j.cels.2017.12.004
UniProt Consortium. Uniprot: the universal protein knowledgebase in 2023. Nucleic Acids Res. 51, D523–D531 (2023).
doi: 10.1093/nar/gkac1052
Huh, W.-K. et al. Global analysis of protein localization in budding yeast. Nature 425, 686–691 (2003).
pubmed: 14562095
doi: 10.1038/nature02026
Peng, K., Radivojac, P., Vucetic, S., Dunker, A. K. & Obradovic, Z. Length-dependent prediction of protein intrinsic disorder. BMC Bioinformatics 7, 208 (2006).