The dual life of disordered lysine-rich domains of snoRNPs in rRNA modification and nucleolar compaction.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
31 Oct 2024
Historique:
received: 12 01 2024
accepted: 22 10 2024
medline: 1 11 2024
pubmed: 1 11 2024
entrez: 1 11 2024
Statut: epublish

Résumé

Intrinsically disordered regions (IDRs) are highly enriched in the nucleolar proteome but their physiological role in ribosome assembly remains poorly understood. Our study reveals the functional plasticity of the extremely abundant lysine-rich IDRs of small nucleolar ribonucleoprotein particles (snoRNPs) from protists to mammalian cells. We show in Saccharomyces cerevisiae that the electrostatic properties of this lysine-rich IDR, the KKE/D domain, promote snoRNP accumulation in the vicinity of nascent rRNAs, facilitating their modification. Under stress conditions reducing the rate of ribosome assembly, they are essential for nucleolar compaction and sequestration of key early-acting ribosome biogenesis factors, including RNA polymerase I, owing to their self-interaction capacity in a latent, non-rRNA-associated state. We propose that such functional plasticity of these lysine-rich IDRs may represent an ancestral eukaryotic regulatory mechanism, explaining how nucleolar morphology is continuously adapted to rRNA production levels.

Identifiants

pubmed: 39482307
doi: 10.1038/s41467-024-53805-1
pii: 10.1038/s41467-024-53805-1
doi:

Substances chimiques

Lysine K3Z4F929H6
RNA, Ribosomal 0
Saccharomyces cerevisiae Proteins 0
Ribonucleoproteins, Small Nucleolar 0
RNA Polymerase I EC 2.7.7.6
Intrinsically Disordered Proteins 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

9415

Subventions

Organisme : Agence Nationale de la Recherche (French National Research Agency)
ID : ANR-21-CE12-0008-01

Informations de copyright

© 2024. The Author(s).

Références

Peña, C., Hurt, E. & Panse, V. G. Eukaryotic ribosome assembly, transport and quality control. Nat. Struct. Mol. Biol. 24, 689–699 (2017).
pubmed: 28880863 doi: 10.1038/nsmb.3454
Klinge, S. & Woolford, J. L. Ribosome assembly coming into focus. Nat. Rev. Mol. Cell Biol. 20, 116–131 (2019).
pubmed: 30467428 pmcid: 7725133 doi: 10.1038/s41580-018-0078-y
Henras, A. K., Plisson-Chastang, C., O’Donohue, M.-F., Chakraborty, A. & Gleizes, P.-E. An overview of pre-ribosomal RNA processing in eukaryotes. Wiley Interdiscip. Rev. RNA 6, 225–242 (2015).
pubmed: 25346433 doi: 10.1002/wrna.1269
Lafontaine, D. L. J., Riback, J. A., Bascetin, R. & Brangwynne, C. P. The nucleolus as a multiphase liquid condensate. Nat. Rev. Mol. Cell Biol. 22, 165–182 (2021).
pubmed: 32873929 doi: 10.1038/s41580-020-0272-6
Hernandez-Verdun, D. The nucleolus: a model for the organization of nuclear functions. Histochem. Cell Biol. 126, 135–148 (2006).
pubmed: 16835752 doi: 10.1007/s00418-006-0212-3
Grummt, I. The nucleolus—guardian of cellular homeostasis and genome integrity. Chromosoma 122, 487–497 (2013).
pubmed: 24022641 doi: 10.1007/s00412-013-0430-0
Frottin, F. et al. The nucleolus functions as a phase-separated protein quality control compartment. Science 365, 342–347 (2019).
pubmed: 31296649 doi: 10.1126/science.aaw9157
Léger-Silvestre, I., Trumtel, S., Noaillac-Depeyre, J. & Gas, N. Functional compartmentalization of the nucleus in the budding yeast Saccharomyces cerevisiae. Chromosoma 108, 103–113 (1999).
pubmed: 10382072 doi: 10.1007/s004120050357
Sirri, V., Urcuqui-Inchima, S., Roussel, P. & Hernandez-Verdun, D. Nucleolus: the fascinating nuclear body. Histochem. Cell Biol. 129, 13–31 (2008).
pubmed: 18046571 doi: 10.1007/s00418-007-0359-6
Henras, A. K., Plisson-Chastang, C., Humbert, O., Romeo, Y. & Henry, Y. Synthesis, function, and heterogeneity of snoRNA-guided posttranscriptional nucleoside modifications in eukaryotic ribosomal RNAs. Enzymes 41, 169–213 (2017).
pubmed: 28601222 doi: 10.1016/bs.enz.2017.03.007
Meier, U. T. The daunting task of modifying ribosomal RNA. RNA 28, 1555–1557 (2022).
pubmed: 36109161 pmcid: 9670813
Sloan, K. E. et al. Tuning the ribosome: the influence of rRNA modification on eukaryotic ribosome biogenesis and function. RNA Biol. 14, 1138–1152 (2017).
pubmed: 27911188 doi: 10.1080/15476286.2016.1259781
Chen, Y.-L. et al. The telomerase inhibitor Gno1p/PINX1 activates the helicase Prp43p during ribosome biogenesis. Nucleic Acids Res. 42, 7330–7345 (2014).
pubmed: 24823796 pmcid: 4066782 doi: 10.1093/nar/gku357
Aquino, G. R. R. et al. RNA helicase-mediated regulation of snoRNP dynamics on pre-ribosomes and rRNA 2’-O-methylation. Nucleic Acids Res. https://doi.org/10.1093/nar/gkab159 (2021).
Bailey, A. D. et al. Concerted modification of nucleotides at functional centers of the ribosome revealed by single-molecule RNA modification profiling. Elife 11, e76562 (2022).
Guillen-Chable, F., Bayona, A., Rodríguez-Zapata, L. C. & Castano, E. Phase separation of intrinsically disordered nucleolar proteins relate to localization and function. Int. J. Mol. Sci. 22, 13095 (2021).
LaPeruta, A. J., Micic, J. & Woolford, J. L. Additional principles that govern the release of pre-ribosomes from the nucleolus into the nucleoplasm in yeast. Nucleic Acids Res. https://doi.org/10.1093/nar/gkac430 (2022).
Uversky, V. N. Protein intrinsic disorder and structure-function continuum. Prog. Mol. Biol. Transl. Sci. 166, 1–17 (2019).
pubmed: 31521229 doi: 10.1016/bs.pmbts.2019.05.003
Mitrea, D. M. et al. Self-interaction of NPM1 modulates multiple mechanisms of liquid-liquid phase separation. Nat. Commun. 9, 842 (2018).
pubmed: 29483575 pmcid: 5827731 doi: 10.1038/s41467-018-03255-3
Tartakoff, A. et al. The dual nature of the nucleolus. Genes Dev. 36, 765–769 (2022).
pubmed: 36342833 pmcid: 9480854 doi: 10.1101/gad.349748.122
Feric, M. et al. Coexisting liquid phases underlie nucleolar subcompartments. Cell 165, 1686–1697 (2016).
pubmed: 27212236 doi: 10.1016/j.cell.2016.04.047
Yao, R.-W. et al. Nascent pre-rRNA sorting via phase separation drives the assembly of dense fibrillar components in the human nucleolus. Mol. Cell 76, 767–783.e11 (2019).
pubmed: 31540874 doi: 10.1016/j.molcel.2019.08.014
McSwiggen, D. T., Mir, M., Darzacq, X. & Tjian, R. Evaluating phase separation in live cells: diagnosis, caveats, and functional consequences. Genes Dev. 33, 1619–1634 (2019).
pubmed: 31594803 pmcid: 6942051 doi: 10.1101/gad.331520.119
Das, R. K. & Pappu, R. V. Conformations of intrinsically disordered proteins are influenced by linear sequence distributions of oppositely charged residues. Proc. Natl Acad. Sci. USA 110, 13392–13397 (2013).
pubmed: 23901099 pmcid: 3746876 doi: 10.1073/pnas.1304749110
McBride, A. E., Conboy, A. K., Brown, S. P., Ariyachet, C. & Rutledge, K. L. Specific sequences within arginine-glycine-rich domains affect mRNA-binding protein function. Nucleic Acids Res. 37, 4322–4330 (2009).
pubmed: 19454603 pmcid: 2715232 doi: 10.1093/nar/gkp349
Cloutier, S. C., Ma, W. K., Nguyen, L. T. & Tran, E. J. The DEAD-box RNA helicase Dbp2 connects RNA quality control with repression of aberrant transcription. J. Biol. Chem. 287, 26155–26166 (2012).
pubmed: 22679025 pmcid: 3406699 doi: 10.1074/jbc.M112.383075
Gautier, T., Bergès, T., Tollervey, D. & Hurt, E. Nucleolar KKE/D repeat proteins Nop56p and Nop58p interact with Nop1p and are required for ribosome biogenesis. Mol. Cell. Biol. 17, 7088–7098 (1997).
pubmed: 9372940 pmcid: 232565 doi: 10.1128/MCB.17.12.7088
Winkler, A. A., Bobok, A., Zonneveld, B. J., Steensma, H. Y. & Hooykaas, P. J. The lysine-rich C-terminal repeats of the centromere-binding factor 5 (Cbf5) of Kluyveromyces lactis are not essential for function. Yeast 14, 37–48 (1998).
pubmed: 9483794 doi: 10.1002/(SICI)1097-0061(19980115)14:1<37::AID-YEA198>3.0.CO;2-2
Gadal, O. et al. A34.5, a nonessential component of yeast RNA polymerase I, cooperates with subunit A14 and DNA topoisomerase I to produce a functional rRNA synthesis machine. Mol. Cell. Biol. 17, 1787–1795 (1997).
pubmed: 9121426 pmcid: 232025 doi: 10.1128/MCB.17.4.1787
Albert, B. et al. RNA polymerase I-specific subunits promote polymerase clustering to enhance the rRNA gene transcription cycle. J. Cell Biol. 192, 277–293 (2011).
pubmed: 21263028 pmcid: 3172167 doi: 10.1083/jcb.201006040
Colau, G., Thiry, M., Leduc, V., Bordonné, R. & Lafontaine, D. L. J. The small nucle(ol)ar RNA cap trimethyltransferase is required for ribosome synthesis and intact nucleolar morphology. Mol. Cell. Biol. 24, 7976–7986 (2004).
pubmed: 15340060 pmcid: 515057 doi: 10.1128/MCB.24.18.7976-7986.2004
Robert-Paganin, J. et al. Functional link between DEAH/RHA helicase Prp43 activation and ATP base binding. Nucleic Acids Res. 45, 1539–1552 (2017).
pubmed: 28180308 doi: 10.1093/nar/gkw1233
Wei, T. et al. Small-molecule targeting of RNA polymerase I activates a conserved transcription elongation checkpoint. Cell Rep. 23, 404–414 (2018).
pubmed: 29642000 pmcid: 6016085 doi: 10.1016/j.celrep.2018.03.066
Marchand, V., Blanloeil-Oillo, F., Helm, M. & Motorin, Y. Illumina-based RiboMethSeq approach for mapping of 2’-O-Me residues in RNA. Nucleic Acids Res. 44, e135 (2016).
pubmed: 27302133 pmcid: 5027498 doi: 10.1093/nar/gkw547
Marchand, V. et al. HydraPsiSeq: a method for systematic and quantitative mapping of pseudouridines in RNA. Nucleic Acids Res. 48, e110 (2020).
pubmed: 32976574 pmcid: 7641733 doi: 10.1093/nar/gkaa769
Li, S. et al. Reconstitution and structural analysis of the yeast box H/ACA RNA-guided pseudouridine synthase. Genes Dev. 25, 2409–2421 (2011).
pubmed: 22085967 pmcid: 3222906 doi: 10.1101/gad.175299.111
Bohnsack, M. T. et al. Prp43 Bound at Different Sites on the Pre-rRNA Performs Distinct Functions in Ribosome Synthesis. Mol. Cell 36, 583–592 (2009).
Weaver, P. L., Sun, C. & Chang, T. H. Dbp3p, a putative RNA helicase in Saccharomyces cerevisiae, is required for efficient pre-rRNA processing predominantly at site A3. Mol. Cell. Biol. 17, 1354–1365 (1997).
pubmed: 9032262 pmcid: 231860 doi: 10.1128/MCB.17.3.1354
Normand, C., Berthaud, M., Gadal, O. & Léger-Silvestre, I. Correlative light and electron microscopy of nucleolar transcription in Saccharomyces cerevisiae. Methods Mol. Biol. 1455, 29–40 (2016).
pubmed: 27576708 doi: 10.1007/978-1-4939-3792-9_3
Branon, T. C. et al. Efficient proximity labeling in living cells and organisms with TurboID. Nat. Biotechnol. 36, 880–887 (2018).
pubmed: 30125270 doi: 10.1038/nbt.4201
Hierlmeier, T. et al. Rrp5p, Noc1p and Noc2p form a protein module which is part of early large ribosomal subunit precursors in S. cerevisiae. Nucleic Acids Res. 41, 1191–1210 (2013).
pubmed: 23209026 doi: 10.1093/nar/gks1056
Nogi, Y., Yano, R. & Nomura, M. Synthesis of large rRNAs by RNA polymerase II in mutants of Saccharomyces cerevisiae defective in RNA polymerase I. Proc. Natl Acad. Sci. USA 88, 3962–3966 (1991).
pubmed: 2023944 pmcid: 51573 doi: 10.1073/pnas.88.9.3962
Vu, L., Siddiqi, I., Lee, B. S., Josaitis, C. A. & Nomura, M. RNA polymerase switch in transcription of yeast rDNA: role of transcription factor UAF (upstream activation factor) in silencing rDNA transcription by RNA polymerase II. Proc. Natl Acad. Sci. USA 96, 4390–4395 (1999).
pubmed: 10200272 pmcid: 16342 doi: 10.1073/pnas.96.8.4390
Beckouet, F. et al. Two RNA polymerase I subunits control the binding and release of Rrn3 during transcription. Mol. Cell. Biol. 28, 1596–1605 (2008).
Tsang, C. K., Bertram, P. G., Ai, W., Drenan, R. & Zheng, X. F. S. Chromatin-mediated regulation of nucleolar structure and RNA Pol I localization by TOR. EMBO J. 22, 6045–6056 (2003).
pubmed: 14609951 pmcid: 275436 doi: 10.1093/emboj/cdg578
Ha, C. W., Sung, M.-K. & Huh, W.-K. Nsi1 plays a significant role in the silencing of ribosomal DNA in Saccharomyces cerevisiae. Nucleic Acids Res. 40, 4892–4903 (2012).
pubmed: 22362748 pmcid: 3367210 doi: 10.1093/nar/gks188
Tartakoff, A. M. et al. The nucleolus as a polarized coaxial cable in which the rDNA axis is surrounded by dynamic subunit-specific phases. Curr. Biol. 31, 2507–2519.e4 (2021).
pubmed: 33862007 pmcid: 8222187 doi: 10.1016/j.cub.2021.03.041
De Virgilio, C. & Loewith, R. Cell growth control: little eukaryotes make big contributions. Oncogene 25, 6392–6415 (2006).
pubmed: 17041625 doi: 10.1038/sj.onc.1209884
Riback, J. A. et al. Composition-dependent thermodynamics of intracellular phase separation. Nature 581, 209–214 (2020).
pubmed: 32405004 pmcid: 7733533 doi: 10.1038/s41586-020-2256-2
Ruff, K. M., Dar, F. & Pappu, R. V. Ligand effects on phase separation of multivalent macromolecules. Proc. Natl. Acad. Sci. USA 118, e2017184118 (2021).
Schäfer, T., Strauss, D., Petfalski, E., Tollervey, D. & Hurt, E. The path from nucleolar 90S to cytoplasmic 40S pre-ribosomes. EMBO J. 22, 1370–1380 (2003).
pubmed: 12628929 pmcid: 151049 doi: 10.1093/emboj/cdg121
Matos-Perdomo, E. & Machín, F. Nucleolar and ribosomal DNA structure under stress: yeast lessons for aging and cancer. Cells 8, 779 (2019).
Boulon, S., Westman, B. J., Hutten, S., Boisvert, F.-M. & Lamond, A. I. The nucleolus under stress. Mol. Cell 40, 216–227 (2010).
pubmed: 20965417 pmcid: 2987465 doi: 10.1016/j.molcel.2010.09.024
van Sluis, M. & McStay, B. Nucleolar reorganization in response to rDNA damage. Curr. Opin. Cell Biol. 46, 81–86 (2017).
pubmed: 28431265 doi: 10.1016/j.ceb.2017.03.004
King, M. R., Ruff, K. M. & Pappu, R. V. Emergent microenvironments of nucleoli. Nucleus 15, 2319957 (2024).
pubmed: 38443761 pmcid: 10936679 doi: 10.1080/19491034.2024.2319957
King, M. R. et al. Macromolecular condensation organizes nucleolar sub-phases to set up a pH gradient. Cell 187, 1889–1906.e24 (2024).
pubmed: 38503281 doi: 10.1016/j.cell.2024.02.029
James, P., Halladay, J. & Craig, E. A. Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics 144, 1425–1436 (1996).
Longtine, M. S. et al. Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14, 953–961 (1998).
pubmed: 9717241 doi: 10.1002/(SICI)1097-0061(199807)14:10<953::AID-YEA293>3.0.CO;2-U
Pichot, F. et al. Holistic optimization of bioinformatic analysis pipeline for detection and quantification of 2’-O-methylations in RNA by RiboMethSeq. Front. Genet. 11, 38 (2020).
pubmed: 32117451 pmcid: 7031861 doi: 10.3389/fgene.2020.00038
Pichot, F., Marchand, V., Helm, M. & Motorin, Y. Data analysis pipeline for detection and quantification of pseudouridine (ψ) in RNA by hydrapsiseq. Methods Mol. Biol. 2624, 207–223 (2023).
pubmed: 36723818 doi: 10.1007/978-1-0716-2962-8_14
Marchand, V., Bourguignon-Igel, V., Helm, M. & Motorin, Y. Analysis of pseudouridines and other RNA modifications using HydraPsiSeq protocol. Methods 203, 383–391 (2022).
pubmed: 34481083 doi: 10.1016/j.ymeth.2021.08.008
Rappsilber, J., Mann, M. & Ishihama, Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat. Protoc. 2, 1896–1906 (2007).
pubmed: 17703201 doi: 10.1038/nprot.2007.261
Tyanova, S., Temu, T. & Cox, J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat. Protoc. 11, 2301–2319 (2016).
pubmed: 27809316 doi: 10.1038/nprot.2016.136
Zarin, T. et al. Identifying molecular features that are associated with biological function of intrinsically disordered protein regions. Elife 10, e60220 (2021).
Holehouse, A. S., Das, R. K., Ahad, J. N., Richardson, M. O. G. & Pappu, R. V. CIDER: resources to analyze sequence-ensemble relationships of intrinsically disordered proteins. Biophys. J. 112, 16–21 (2017).
pubmed: 28076807 pmcid: 5232785 doi: 10.1016/j.bpj.2016.11.3200
Ho, B., Baryshnikova, A. & Brown, G. W. Unification of protein abundance datasets yields a quantitative Saccharomyces cerevisiae proteome. Cell Syst. 6, 192–205.e3 (2018).
pubmed: 29361465 doi: 10.1016/j.cels.2017.12.004
UniProt Consortium. Uniprot: the universal protein knowledgebase in 2023. Nucleic Acids Res. 51, D523–D531 (2023).
doi: 10.1093/nar/gkac1052
Huh, W.-K. et al. Global analysis of protein localization in budding yeast. Nature 425, 686–691 (2003).
pubmed: 14562095 doi: 10.1038/nature02026
Peng, K., Radivojac, P., Vucetic, S., Dunker, A. K. & Obradovic, Z. Length-dependent prediction of protein intrinsic disorder. BMC Bioinformatics 7, 208 (2006).

Auteurs

Carine Dominique (C)

Molecular, Cellular and Developmental (MCD) Unit, Centre for Integrative Biology (CBI), CNRS, University of Toulouse, UPS, Toulouse, France.

Nana Kadidia Maiga (NK)

Molecular, Cellular and Developmental (MCD) Unit, Centre for Integrative Biology (CBI), CNRS, University of Toulouse, UPS, Toulouse, France.

Alfonso Méndez-Godoy (A)

Department of Biology, University of Fribourg, Fribourg, Switzerland.

Benjamin Pillet (B)

Department of Biology, University of Fribourg, Fribourg, Switzerland.

Hussein Hamze (H)

Molecular, Cellular and Developmental (MCD) Unit, Centre for Integrative Biology (CBI), CNRS, University of Toulouse, UPS, Toulouse, France.

Isabelle Léger-Silvestre (I)

Molecular, Cellular and Developmental (MCD) Unit, Centre for Integrative Biology (CBI), CNRS, University of Toulouse, UPS, Toulouse, France.

Yves Henry (Y)

Molecular, Cellular and Developmental (MCD) Unit, Centre for Integrative Biology (CBI), CNRS, University of Toulouse, UPS, Toulouse, France.

Virginie Marchand (V)

CNRS-Université de Lorraine, UAR2008 IBSLor/UMR7365 IMoPA, Nancy, France.

Valdir Gomes Neto (V)

Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil.

Christophe Dez (C)

Molecular, Cellular and Developmental (MCD) Unit, Centre for Integrative Biology (CBI), CNRS, University of Toulouse, UPS, Toulouse, France.

Yuri Motorin (Y)

CNRS-Université de Lorraine, UAR2008 IBSLor/UMR7365 IMoPA, Nancy, France.

Dieter Kressler (D)

Department of Biology, University of Fribourg, Fribourg, Switzerland. dieter.kressler@unifr.ch.

Olivier Gadal (O)

Molecular, Cellular and Developmental (MCD) Unit, Centre for Integrative Biology (CBI), CNRS, University of Toulouse, UPS, Toulouse, France. olivier.gadal@univ-tlse3.fr.

Anthony K Henras (AK)

Molecular, Cellular and Developmental (MCD) Unit, Centre for Integrative Biology (CBI), CNRS, University of Toulouse, UPS, Toulouse, France. anthony.henras@univ-tlse3.fr.

Benjamin Albert (B)

Molecular, Cellular and Developmental (MCD) Unit, Centre for Integrative Biology (CBI), CNRS, University of Toulouse, UPS, Toulouse, France. benjamin.albert@univ-tlse3.fr.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH