Altered Immunity of Laboratory Mice in the Natural Environment Is Associated with Fungal Colonization.
Animals
Autophagy-Related Proteins
/ genetics
CD8-Positive T-Lymphocytes
Environment
Feces
/ microbiology
Female
Fungi
/ genetics
Gastrointestinal Microbiome
/ immunology
Granulocytes
/ immunology
Immune System
Intestines
/ microbiology
Lymphocytes
Male
Mice
Mice, Inbred C57BL
Mice, Knockout
Mycobiome
/ immunology
Nod2 Signaling Adaptor Protein
/ genetics
Aspergillus
fungi
granulocytes
laboratory mice
mesocosm
microbiota
mycobiota
neutrophils
rewilding
wild mice
Journal
Cell host & microbe
ISSN: 1934-6069
Titre abrégé: Cell Host Microbe
Pays: United States
ID NLM: 101302316
Informations de publication
Date de publication:
13 05 2020
13 05 2020
Historique:
received:
01
10
2019
revised:
11
12
2019
accepted:
28
02
2020
pubmed:
27
3
2020
medline:
20
1
2021
entrez:
27
3
2020
Statut:
ppublish
Résumé
Free-living mammals, such as humans and wild mice, display heightened immune activation compared with artificially maintained laboratory mice. These differences are partially attributed to microbial exposure as laboratory mice infected with pathogens exhibit immune profiles more closely resembling that of free-living animals. Here, we examine how colonization by microorganisms within the natural environment contributes to immune system maturation by releasing inbred laboratory mice into an outdoor enclosure. In addition to enhancing differentiation of T cell populations previously associated with pathogen exposure, outdoor release increased circulating granulocytes. However, these "rewilded" mice were not infected by pathogens previously implicated in immune activation. Rather, immune system changes were associated with altered microbiota composition with notable increases in intestinal fungi. Fungi isolated from rewilded mice were sufficient in increasing circulating granulocytes. These findings establish a model to investigate how the natural environment impacts immune development and show that sustained fungal exposure impacts granulocyte numbers.
Identifiants
pubmed: 32209432
pii: S1931-3128(20)30123-2
doi: 10.1016/j.chom.2020.02.015
pmc: PMC7276265
mid: NIHMS1574229
pii:
doi:
Substances chimiques
Atg16l1 protein, mouse
0
Autophagy-Related Proteins
0
Nod2 Signaling Adaptor Protein
0
Nod2 protein, mouse
0
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
809-822.e6Subventions
Organisme : NCATS NIH HHS
ID : UL1 TR001445
Pays : United States
Organisme : NCI NIH HHS
ID : P30 CA016087
Pays : United States
Organisme : NIDDK NIH HHS
ID : F30 DK122698
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK093668
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL125816
Pays : United States
Organisme : NIH HHS
ID : S10 OD018338
Pays : United States
Organisme : NIAID NIH HHS
ID : R01 AI140754
Pays : United States
Organisme : NIAID NIH HHS
ID : R01 AI130945
Pays : United States
Organisme : NIAID NIH HHS
ID : R01 AI121244
Pays : United States
Organisme : NIAID NIH HHS
ID : R01 AI133977
Pays : United States
Organisme : NIDDK NIH HHS
ID : R01 DK103788
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL084312
Pays : United States
Organisme : NHLBI NIH HHS
ID : R01 HL123340
Pays : United States
Organisme : NIAID NIH HHS
ID : T32 AI100853
Pays : United States
Organisme : NIAID NIH HHS
ID : R01 AI137336
Pays : United States
Organisme : NIH HHS
ID : S10 OD010580
Pays : United States
Commentaires et corrections
Type : CommentIn
Type : CommentIn
Informations de copyright
Copyright © 2020 Elsevier Inc. All rights reserved.
Déclaration de conflit d'intérêts
Declaration of Interests K.C. receives research funding from Pfizer and Abbvie and P.L. receives research funding from Pfizer. K.C. has consulted for or received an honorarium from Puretech Health, Genentech, and Abbvie. K.C. has a provisional patent, U.S. Patent Application. No. 15/625,934. P.L. consults for and has equity in Toilabs. P.L. is a federal employee.
Références
Nature. 2014 Dec 4;516(7529):94-8
pubmed: 25409145
Cell Host Microbe. 2015 Apr 8;17(4):429-40
pubmed: 25816775
Infect Immun. 2015 Jan;83(1):372-8
pubmed: 25385792
Cell Host Microbe. 2016 Jun 8;19(6):865-73
pubmed: 27237365
Front Immunol. 2018 Jan 08;8:1914
pubmed: 29358937
Nature. 2014 Feb 27;506(7489):456-62
pubmed: 24553140
Microbiome. 2018 May 17;6(1):90
pubmed: 29773078
Cell Host Microbe. 2015 May 13;17(5):577-91
pubmed: 25974300
Proc Natl Acad Sci U S A. 2014 May 27;111(21):7741-6
pubmed: 24821797
mSystems. 2017 Mar 7;2(2):
pubmed: 28289731
Immunity. 2014 Aug 21;41(2):311-24
pubmed: 25088769
Nature. 2008 Nov 13;456(7219):264-8
pubmed: 18849965
Immunity. 2011 May 27;34(5):769-80
pubmed: 21565531
Nat Microbiol. 2019 Oct;4(10):1737-1749
pubmed: 31182797
PLoS Comput Biol. 2012;8(6):e1002358
pubmed: 22719234
Science. 2016 Apr 29;352(6285):608-12
pubmed: 27080105
Appl Environ Microbiol. 2016 Nov 21;82(24):7217-7226
pubmed: 27736792
Cell Host Microbe. 2013 Aug 14;14(2):216-24
pubmed: 23954160
Nature. 2008 Nov 13;456(7219):259-63
pubmed: 18849966
Cell Host Microbe. 2016 Jan 13;19(1):79-90
pubmed: 26749442
Cell Host Microbe. 2017 Dec 13;22(6):809-816.e4
pubmed: 29174402
Cell Host Microbe. 2016 May 11;19(5):713-9
pubmed: 27107939
Cell Host Microbe. 2019 Mar 13;25(3):404-417.e6
pubmed: 30870622
Nat Cell Biol. 2015 Jul;17(7):893-906
pubmed: 26098576
PLoS Biol. 2018 Mar 8;16(3):e2004108
pubmed: 29518091
Science. 2018 Nov 2;362(6414):589-595
pubmed: 30385579
Science. 2012 Jun 8;336(6086):1314-7
pubmed: 22674328
Nucleic Acids Res. 2019 Jan 8;47(D1):D259-D264
pubmed: 30371820
Sci Transl Med. 2017 Mar 8;9(380):
pubmed: 28275154
Trends Immunol. 2017 Mar;38(3):181-193
pubmed: 28161189
Science. 2016 May 27;352(6289):1116-20
pubmed: 27230380
F1000Res. 2018 Sep 6;7:1418
pubmed: 30416717
Cell. 2016 Oct 6;167(2):444-456.e14
pubmed: 27716507
mBio. 2012 Feb 21;3(1):
pubmed: 22354957
Science. 2019 Aug 2;365(6452):
pubmed: 31371577
J Exp Med. 2017 Dec 4;214(12):3687-3705
pubmed: 29089374
Cell Host Microbe. 2016 Dec 14;20(6):744-757
pubmed: 27889463
Bioinformatics. 2018 Apr 1;34(7):1235-1237
pubmed: 29194469
Cell Host Microbe. 2018 Dec 12;24(6):847-856.e4
pubmed: 30503509
mBio. 2018 Jul 17;9(4):
pubmed: 30018106
Nat Immunol. 2019 Mar;20(3):276-287
pubmed: 30692621
Cell. 2017 Nov 16;171(5):1015-1028.e13
pubmed: 29056339
Cell. 2010 Jun 25;141(7):1135-45
pubmed: 20602997
BMC Genomics. 2018 Jun 25;19(1):493
pubmed: 29940835
Science. 2018 Jan 12;359(6372):232-236
pubmed: 29326275
Nat Methods. 2015 Oct;12(10):902-3
pubmed: 26418763
Immunity. 2016 Feb 16;44(2):330-42
pubmed: 26885858
Proc Natl Acad Sci U S A. 2019 Jan 29;116(5):1745-1754
pubmed: 30635416
Cell Host Microbe. 2019 Mar 13;25(3):377-388.e6
pubmed: 30850233
Cell. 2019 Mar 7;176(6):1340-1355.e15
pubmed: 30799037
Nat Commun. 2017 May 03;8:14811
pubmed: 28466840
J Immunol. 2017 Jul 15;199(2):383-388
pubmed: 28696328
Nature. 2016 Apr 28;532(7600):512-6
pubmed: 27096360
Appl Environ Microbiol. 2012 Dec;78(24):8845-8
pubmed: 23042163
Nat Microbiol. 2018 Oct;3(10):1131-1141
pubmed: 30202015
Nat Immunol. 2010 Jan;11(1):55-62
pubmed: 19898471
Nat Med. 2010 Jan;16(1):90-7
pubmed: 19966812
Nat Commun. 2018 Nov 27;9(1):5006
pubmed: 30479334