Selective inhibition of electrical conduction within the pulmonary veins by α1-adrenergic receptors activation in the Rat.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
25 03 2020
Historique:
received: 30 12 2019
accepted: 11 03 2020
entrez: 28 3 2020
pubmed: 28 3 2020
medline: 5 1 2021
Statut: epublish

Résumé

Pulmonary veins (PV) are involved in the pathophysiology of paroxysmal atrial fibrillation. In the rat, left atrium (LA) and PV cardiomyocytes have different reactions to α1-adrenergic receptor activation. In freely beating atria-PV preparations, we found that electrical field potential (EFP) originated from the sino-atrial node propagated through the LA and the PV. The α1-adrenergic receptor agonist cirazoline induced a progressive loss of EFP conduction in the PV whereas it was maintained in the LA. This could be reproduced in preparations electrically paced at 5 Hz in LA. During pacing at 10 Hz in the PV where high firing rate ectopic foci can occur, cirazoline stopped EFP conduction from the PV to the LA, which allowed the sino-atrial node to resume its pace-making function. Loss of conduction in the PV was associated with depolarization of the diastolic membrane potential of PV cardiomyocytes. Adenosine, which reversed the cirazoline-induced depolarization of the diastolic membrane potential of PV cardiomyocytes, restored full over-shooting action potentials and EFP conduction in the PV. In conclusion, selective activation of α1-adrenergic receptors results in the abolition of electrical conduction within the PV. These results highlight a potentially novel pharmacological approach to treat paroxysmal atrial fibrillation by targeting directly the PV myocardium.

Identifiants

pubmed: 32214185
doi: 10.1038/s41598-020-62349-5
pii: 10.1038/s41598-020-62349-5
pmc: PMC7096464
doi:

Substances chimiques

Adrenergic alpha-1 Receptor Antagonists 0
Receptors, Adrenergic, alpha-1 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

5390

Références

Haïssaguerre, M. et al. Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N. Engl. J. Med. 339, 659–666 (1998).
doi: 10.1056/NEJM199809033391003
Kirchhof, P. et al. 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Eur. Eur. Pacing Arrhythm. Card. Electrophysiol. J. Work. Groups Card. Pacing Arrhythm. Card. Cell. Electrophysiol. Eur. Soc. Cardiol. 18, 1609–1678 (2016).
Bond, R., Olshansky, B. & Kirchhof, P. Recent advances in rhythm control for atrial fibrillation. F1000Research 6, 1796 (2017).
doi: 10.12688/f1000research.11061.1
Ouyang, F. et al. Long-term results of catheter ablation in paroxysmal atrial fibrillation: lessons from a 5-year follow-up. Circulation 122, 2368–2377 (2010).
doi: 10.1161/CIRCULATIONAHA.110.946806
Roten, L. et al. Current hot potatoes in atrial fibrillation ablation. Curr. Cardiol. Rev. 8, 327–346 (2012).
doi: 10.2174/157340312803760802
Li, D., Sun, H. & Levesque, P. Antiarrhythmic drug therapy for atrial fibrillation: focus on atrial selectivity and safety. Cardiovasc. Hematol. Agents Med. Chem. 7, 64–75 (2009).
doi: 10.2174/187152509787047621
Podd, S. J., Freemantle, N., Furniss, S. S. & Sulke, N. First clinical trial of specific IKACh blocker shows no reduction in atrial fibrillation burden in patients with paroxysmal atrial fibrillation: pacemaker assessment of BMS 914392 in patients with paroxysmal atrial fibrillation. Eur. Eur. Pacing Arrhythm. Card. Electrophysiol. J. Work. Groups Card. Pacing Arrhythm. Card. Cell. Electrophysiol. Eur. Soc. Cardiol. 18, 340–346 (2016).
Doisne, N., Maupoil, V., Cosnay, P. & Findlay, I. Catecholaminergic automatic activity in the rat pulmonary vein: electrophysiological differences between cardiac muscle in the left atrium and pulmonary vein. Am. J. Physiol. Heart Circ. Physiol. 297, H102–108 (2009).
doi: 10.1152/ajpheart.00256.2009
Maupoil, V., Bronquard, C., Freslon, J.-L., Cosnay, P. & Findlay, I. Ectopic activity in the rat pulmonary vein can arise from simultaneous activation of alpha1- and beta1-adrenoceptors. Br. J. Pharmacol. 150, 899–905 (2007).
doi: 10.1038/sj.bjp.0707177
O’Connell, T. D., Jensen, B. C., Baker, A. J. & Simpson, P. C. Cardiac alpha1-adrenergic receptors: novel aspects of expression, signaling mechanisms, physiologic function, and clinical importance. Pharmacol. Rev. 66, 308–333 (2014).
doi: 10.1124/pr.112.007203
Thomas, R. C. et al. A Myocardial Slice Culture Model Reveals Alpha-1A-Adrenergic Receptor Signaling in the Human Heart. JACC Basic Transl. Sci. 1, 155–167 (2016).
doi: 10.1016/j.jacbts.2016.03.005
Iwasaki, Y.-K. et al. Atrial fibrillation promotion with long-term repetitive obstructive sleep apnea in a rat model. J. Am. Coll. Cardiol. 64, 2013–2023 (2014).
doi: 10.1016/j.jacc.2014.05.077
Parikh, A. et al. Relaxin suppresses atrial fibrillation by reversing fibrosis and myocyte hypertrophy and increasing conduction velocity and sodium current in spontaneously hypertensive rat hearts. Circ. Res. 113, 313–321 (2013).
doi: 10.1161/CIRCRESAHA.113.301646
Egorov, Y. V., Kuz’min, V. S., Glukhov, A. V. & Rosenshtraukh, L. V. Electrophysiological Characteristics, Rhythm, Disturbances and Conduction Discontinuities Under Autonomic Stimulation in the Rat Pulmonary Vein Myocardium. J. Cardiovasc. Electrophysiol. 26, 1130–1139 (2015).
doi: 10.1111/jce.12738
Melnyk, P. et al. Comparison of ion channel distribution and expression in cardiomyocytes of canine pulmonary veins versus left atrium. Cardiovasc. Res. 65, 104–116 (2005).
doi: 10.1016/j.cardiores.2004.08.014
Ragazzi, E., Wu, S. N., Shryock, J. & Belardinelli, L. Electrophysiological and receptor binding studies to assess activation of the cardiac adenosine receptor by adenine nucleotides. Circ. Res. 68, 1035–1044 (1991).
doi: 10.1161/01.RES.68.4.1035
Wang, X. et al. GIRK channel activation via adenosine or muscarinic receptors has similar effects on rat atrial electrophysiology. J. Cardiovasc. Pharmacol. 62, 192–198 (2013).
doi: 10.1097/FJC.0b013e3182965221
Datino, T. et al. Mechanisms by Which Adenosine Restores Conduction in Dormant Canine Pulmonary Veins. Circulation 121, 963–972 (2010).
doi: 10.1161/CIRCULATIONAHA.109.893107
Braun, A. P., Fedida, D. & Giles, W. R. Activation of alpha 1-adrenoceptors modulates the inwardly rectifying potassium currents of mammalian atrial myocytes. Pflugers Arch. 421, 431–439 (1992).
doi: 10.1007/BF00370253
Cho, H., Lee, D., Lee, S. H. & Ho, W.-K. Receptor-induced depletion of phosphatidylinositol 4,5-bisphosphate inhibits inwardly rectifying K+ channels in a receptor-specific manner. Proc. Natl. Acad. Sci. USA 102, 4643–4648 (2005).
doi: 10.1073/pnas.0408844102
Ehrlich, J. R. et al. Cellular electrophysiology of canine pulmonary vein cardiomyocytes: action potential and ionic current properties. J. Physiol. 551, 801–813 (2003).
doi: 10.1113/jphysiol.2003.046417
Namekata, I., Tsuneoka, Y. & Tanaka, H. Electrophysiological and pharmacological properties of the pulmonary vein myocardium. Biol. Pharm. Bull. 36, 2–7 (2013).
doi: 10.1248/bpb.b212020
Malécot, C. O., Bredeloux, P., Findlay, I. & Maupoil, V. A TTX-sensitive resting Na+ permeability contributes to the catecholaminergic automatic activity in rat pulmonary vein. J. Cardiovasc. Electrophysiol. 26, 311–319 (2015).
doi: 10.1111/jce.12572
Okamoto, Y., Takano, M., Ohba, T. & Ono, K. Arrhythmogenic coupling between the Na+ -Ca2+ exchanger and inositol 1,4,5-triphosphate receptor in rat pulmonary vein cardiomyocytes. J. Mol. Cell. Cardiol. 52, 988–997 (2012).
doi: 10.1016/j.yjmcc.2012.01.007
Egorov, Y. V. et al. Caveolae-Mediated Activation of Mechanosensitive Chloride Channels in Pulmonary Veins Triggers Atrial Arrhythmogenesis. J. Am. Heart Assoc. 8, e012748 (2019).
doi: 10.1161/JAHA.119.012748
Okamoto, Y., Kawamura, K., Nakamura, Y. & Ono, K. Pathological impact of hyperpolarization-activated chloride current peculiar to rat pulmonary vein cardiomyocytes. J. Mol. Cell. Cardiol. 66, 53–62 (2014).
doi: 10.1016/j.yjmcc.2013.11.002
Benjamin, E. J. et al. Prevention of atrial fibrillation: report from a national heart, lung, and blood institute workshop. Circulation. 119, 606–18 (2009).
doi: 10.1161/CIRCULATIONAHA.108.825380

Auteurs

Pierre Bredeloux (P)

EA7349, Laboratoire STIM, Groupe Physiologie des Cellules Cardiaques et Vasculaires, Université de Tours, Tours, France. pierre.bredeloux@univ-tours.fr.

Ian Findlay (I)

EA7349, Laboratoire STIM, Groupe Physiologie des Cellules Cardiaques et Vasculaires, Université de Tours, Tours, France.

Côme Pasqualin (C)

EA7349, Laboratoire STIM, Groupe Physiologie des Cellules Cardiaques et Vasculaires, Université de Tours, Tours, France.

Mélèze Hocini (M)

IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Bordeaux, France.
Université de Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, INSERM U1045, Bordeaux, France.
Bordeaux University Hospital (CHU), Cardiac Electrophysiology and Cardiac Stimulation Team, Bordeaux, France.

Olivier Bernus (O)

IHU Liryc, Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, Bordeaux, France.
Université de Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, INSERM U1045, Bordeaux, France.

Véronique Maupoil (V)

EA7349, Laboratoire STIM, Groupe Physiologie des Cellules Cardiaques et Vasculaires, Université de Tours, Tours, France.

Articles similaires

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male
Humans Meals Time Factors Female Adult

Classifications MeSH