High-Protein Diet Induces Hyperuricemia in a New Animal Model for Studying Human Gout.
Allopurinol
/ therapeutic use
Animal Structures
/ abnormalities
Animals
Chickens
/ blood
Crystallization
Diet, High-Protein
/ adverse effects
Disease Models, Animal
Gout
/ blood
Hyperuricemia
/ blood
Kidney
/ injuries
Liver
/ metabolism
Probenecid
/ therapeutic use
Synovial Fluid
/ metabolism
Uric Acid
/ blood
chicken
gout
high protein diet
hyperuricemia
renal disease
Journal
International journal of molecular sciences
ISSN: 1422-0067
Titre abrégé: Int J Mol Sci
Pays: Switzerland
ID NLM: 101092791
Informations de publication
Date de publication:
20 Mar 2020
20 Mar 2020
Historique:
received:
19
02
2020
revised:
13
03
2020
accepted:
18
03
2020
entrez:
5
4
2020
pubmed:
5
4
2020
medline:
6
1
2021
Statut:
epublish
Résumé
Hyperuricemia is a central risk factor for gout and increases the risk for other chronic diseases, including cardiometabolic disease, kidney disease, and hypertension. Overproduction of urate is one of the main reasons for hyperuricemia, and dietary factors including seafoods, meats, and drinking are contributed to the development of it. However, the lack of a suitable animal model for urate metabolism is one of the main reasons for the delay and limitations of hyperuricemia research. Combining evolutionary biological studies and clinical studies, we conclude that chicken is a preferred animal model for hyperuricemia. Thus, we provided chickens a high-protein diet (HPD) to evaluate the changes in the serum urate levels in chickens. In our study, the HPD increased the serum urate level and maintained it at a long-term high level in chickens. Long-term high serum urate levels induced an abnormal chicken claw morphology and the precipitation of monosodium urate (MSU) in joint synovial fluid. In addition, a long-term HPD also decreased the glomerular filtration rate and induced mild renal injury. Most importantly, allopurinol and probenecid displayed the positive effects in decreasing serum urate and then attenuated hyperuricemia in chicken model. These findings provide a novel model for hyperuricemia and a new opportunity to further investigate the effects of long-term hyperuricemia on other metabolic diseases.
Identifiants
pubmed: 32245084
pii: ijms21062147
doi: 10.3390/ijms21062147
pmc: PMC7140009
pii:
doi:
Substances chimiques
Uric Acid
268B43MJ25
Allopurinol
63CZ7GJN5I
Probenecid
PO572Z7917
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Subventions
Organisme : National Natural Science Foundation of China
ID : 31571164 and 31271207
Références
Sci Rep. 2018 Mar 12;8(1):4314
pubmed: 29531237
Nutrients. 2019 Jun 14;11(6):
pubmed: 31207883
Kidney Int. 2018 Jan;93(1):69-80
pubmed: 28729031
Hypertension. 2002 Sep;40(3):355-60
pubmed: 12215479
Nat Chem Biol. 2006 Mar;2(3):144-8
pubmed: 16462750
Cell. 2017 Apr 06;169(2):258-272.e17
pubmed: 28388410
Eur J Pharmacol. 2015 Jan 15;747:59-70
pubmed: 25499818
J Rheumatol. 2000 Apr;27(4):1045-50
pubmed: 10782835
Br Poult Sci. 2005 Oct;46(5):641-6
pubmed: 16359121
Pharmacogenomics J. 2017 Mar;17(2):201-203
pubmed: 26810134
Ann Rheum Dis. 2012 Sep;71(9):1448-53
pubmed: 22648933
Rheumatology (Oxford). 2010 Nov;49(11):2010-5
pubmed: 20627967
Ann Rheum Dis. 2019 Oct;78(10):1430-1437
pubmed: 31289104
Nutrients. 2018 Oct 16;10(10):
pubmed: 30332783
Ther Adv Musculoskelet Dis. 2016 Aug;8(4):145-59
pubmed: 27493693
Annu Rev Physiol. 2015;77:323-45
pubmed: 25422986
Sci Rep. 2014 Jun 09;4:5227
pubmed: 24909660
Comp Biochem Physiol C Toxicol Pharmacol. 2010 Jan;151(1):12-7
pubmed: 19654053
Nutrients. 2019 Aug 15;11(8):
pubmed: 31443225
Nat Genet. 2019 Oct;51(10):1459-1474
pubmed: 31578528
Free Radic Biol Med. 2002 Nov 15;33(10):1363-71
pubmed: 12419468
Int J Cardiol. 2016 Jun 15;213:8-14
pubmed: 26316329
FASEB J. 1995 Aug;9(11):995-1003
pubmed: 7649415
Neurotherapeutics. 2017 Jan;14(1):148-153
pubmed: 27995438
Am J Med. 2012 Jul;125(7):679-687.e1
pubmed: 22626509
BMJ. 2018 Oct 10;363:k3951
pubmed: 30305269
Semin Nephrol. 2005 Jan;25(1):3-8
pubmed: 15660328
J Clin Invest. 2010 Jun;120(6):1791-9
pubmed: 20516647
Arthritis Res Ther. 2019 Mar 20;21(1):77
pubmed: 30894219
Trends Biochem Sci. 2018 Nov;43(11):847-849
pubmed: 29807701
Comp Biochem Physiol B Biochem Mol Biol. 2003 Jun;135(2):325-35
pubmed: 12798942
Proc Natl Acad Sci U S A. 1981 Nov;78(11):6858-62
pubmed: 6947260
BMC Vet Res. 2019 May 30;15(1):180
pubmed: 31146764
Br J Nutr. 2018 May;119(10):1177-1184
pubmed: 29759111
Int J Mol Sci. 2018 Nov 21;19(11):
pubmed: 30469427
Arthritis Rheum. 2011 Oct;63(10):3136-41
pubmed: 21800283
Nat Rev Rheumatol. 2015 Nov;11(11):649-62
pubmed: 26150127
Adv Chronic Kidney Dis. 2012 Nov;19(6):392-7
pubmed: 23089274
Clin Sci (Lond). 1983 Apr;64(4):399-405
pubmed: 6825409
Nat Commun. 2012 Apr 03;3:764
pubmed: 22473008
Ann Rheum Dis. 2015 Oct;74(10):1789-98
pubmed: 26359487
Arthritis Rheum. 2002 Dec 15;47(6):610-3
pubmed: 12522834
Lancet. 2016 Oct 22;388(10055):2039-2052
pubmed: 27112094
Nat Rev Rheumatol. 2019 Jul;15(7):413-426
pubmed: 31118497
J Nutr. 2001 Jul;131(7):2014-20
pubmed: 11435523
Cell Rep. 2012 Apr 19;1(4):341-9
pubmed: 22832226
Int J Mol Sci. 2019 Mar 28;20(7):
pubmed: 30925663
PLoS One. 2013 May 07;8(5):e64292
pubmed: 23667704