Beneficial effects of Aronia melanocarpa berry extract on hepatic insulin resistance in type 2 diabetes mellitus rats.
Animals
Diabetes Mellitus, Experimental
/ drug therapy
Diabetes Mellitus, Type 2
/ chemically induced
Diet, High-Fat
/ adverse effects
Fruit
/ chemistry
Gene Expression Regulation
/ drug effects
Hypoglycemic Agents
/ pharmacology
Insulin Receptor Substrate Proteins
Insulin Resistance
Liver
/ drug effects
Male
Phosphatidylinositol 3-Kinase
/ metabolism
Phosphatidylinositol 3-Kinases
/ metabolism
Photinia
/ chemistry
Plant Extracts
/ chemistry
Proto-Oncogene Proteins c-akt
/ metabolism
Rats
Signal Transduction
/ drug effects
Aronia melanocarpa berry
PI3K/Akt signaling pathway
hepatic insulin resistance
type 2 diabetes mellitus
Journal
Journal of food science
ISSN: 1750-3841
Titre abrégé: J Food Sci
Pays: United States
ID NLM: 0014052
Informations de publication
Date de publication:
Apr 2020
Apr 2020
Historique:
received:
17
10
2019
revised:
13
01
2020
accepted:
11
02
2020
pubmed:
7
4
2020
medline:
22
9
2020
entrez:
7
4
2020
Statut:
ppublish
Résumé
We aimed to investigate) the effects of Aronia melanocarpa berry extract (AMBE) on hepatic insulin resistance and its mechanism at the molecular level in high-fat diet (HFD)- and streptozotocin (STZ)-induced type 2 diabetes mellitus (T2DM) rats. The rats were supplemented with AMBE at doses of 100 and 400 mg/kg body weight (bw) daily for 8 weeks. AMBE significantly reduced blood glucose and serum insulin levels and the homeostatic model assessment for insulin resistance score; improved glucose tolerance; increased hepatic glycogen content; and regulated glucose metabolism enzyme activity, including glucokinase, pyruvate kinase, phosphoenolpyruvate carboxykinase, and glucose-6-phosphatase in the liver. AMBE also reduced lipid accumulation and oxidative stress along with inflammation in the hepatic tissue of T2DM rats and improved hepatic function. The phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway was activated by AMBE through the elevation of insulin receptor substrate-2, PI3K, Akt, and glycogen synthase kinase-3β phosphorylation and glucose transporter 2, which might contribute to the promotion of glycogen synthesis and improvement of hepatic insulin resistance. AMBE shows promise as an ingredient of functional foods for alleviating hepatic insulin resistance in T2DM. PRACTICAL APPLICATION: The extract from the berries of Aronia melanocarpa (Michx.) Elliott (AMBE), with its relatively high content of polyphenolic compounds, has been shown to exert hypoglycemic effects in animal models of diabetes. Our findings support the use of A. melanocarpa as a functional food additive for the alleviation of hepatic insulin resistance and the management of glucose homeostasis in T2DM.
Identifiants
pubmed: 32249934
doi: 10.1111/1750-3841.15109
doi:
Substances chimiques
Hypoglycemic Agents
0
Insulin Receptor Substrate Proteins
0
Plant Extracts
0
Phosphatidylinositol 3-Kinase
EC 2.7.1.137
Proto-Oncogene Proteins c-akt
EC 2.7.11.1
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1307-1318Subventions
Organisme : National Basic Research Program of China (973 Program)
ID : 2017YFD0400704-4
Organisme : Education Fund Item of Liaoning Province
ID : LQN201713
Informations de copyright
© 2020 Institute of Food Technologists®.
Références
Alkhalidy, H., Moore, W., Wang, A., Luo, J., McMillan, R. P., Wang, Y., & Liu, D. (2018). Kaempferol ameliorates hyperglycemia through suppressing hepatic gluconeogenesis and enhancing hepatic insulin sensitivity in diet-induced obese mice. The Journal of Nutritional Biochemistry, 58, 90-101. https://doi.org/10.1016/j.jnutbio.2018.04.014
Banjari, I., Misir, A., Šavikin, K., Jokić, S., Molnar, M., De Zoysa, H. K. S., & Waisundara, V. Y. (2017). Antidiabetic effects of Aronia melanocarpa and its other therapeutic properties. Frontiers in Nutrition, 4, 53. https://doi.org/10.3389/fnut.2017.00053
Baynes, J. W. (1991). Role of oxidative stress in development of complications in diabetes. Diabetes, 40(4), 405-412. https://doi.org/10.2337/diab.40.4.405
Bermudezsoto, M., Tomasbarberan, F., & Garciaconesa, M. (2007). Stability of polyphenols in chokeberry (Aronia melanocarpa) subjected to in vitro gastric and pancreatic digestion. Food Chemistry, 102(3), 865-874. https://doi.org/10.1016/j.foodchem.2006.06.025
Borst, S. E. (2004). The Role of TNF-α in Insulin Resistance. Endocrine, 23(2-3), 177-182. https://doi.org/10.1385/endo:23:2-3:177
Brady, M. J. (2004). IRS2 takes center stage in the development of type 2 diabetes. The Journal of Clinical Investigation, 114(7), 886-888. https://doi.org/10.1172/JCI23108
Brownlee, M. (1995). The pathological implications of protein glycation. Clinical and Investigative Medicine. Médecine Clinique Et Experimentale, 18(4), 275-281.
Cai, D., Yuan, M., Frantz, D. F., Melendez, P. A., Hansen, L., Lee, J., & Shoelson, S. E. (2005). Local and systemic insulin resistance resulting from hepatic activation of IKK-β and NF-κB. Nature Medicine, 11(2), 183-190. https://doi.org/10.1038/nm1166
Cai, Y., Wang, Y., Zhi, F., Xing, Q. C., & Chen, Y. Z. (2018). The effect of sanggua drink extract on insulin resistance through the PI3K/AKT signaling pathway. Evidence-based Complementary and Alternative Medicine: ECAM, 2018, 9407945. https://doi.org/10.1155/2018/9407945
Demmers, A., Korthout, H., Van Etten-Jamaludin, F. S., Kortekaas, F., & Maaskant, J. M. (2017). Effects of medicinal food plants on impaired glucose tolerance: A systematic review of randomized controlled trials. Diabetes Research and Clinical Practice, 131, 91-106. https://doi.org/10.1016/j.diabres.2017.05.024
Duan, H., Ma, B., Ma, X., Wang, H., Ni, Z., Wang, B., … Li, M. (2016). Anti-diabetic activity of recombinant irisin in STZ-induced insulin-deficient diabetic mice. International Journal of Biological Macromolecules, 84, 457-463. https://doi.org/10.1016/j.ijbiomac.2015.12.049
Egan, A. M., & Dinneen, S. F. (2019). What is diabetes? Medicine, 47(1), 1-4. https://doi.org/10.1016/j.mpmed.2018.10.002
Elimam, H., Abdulla, A. M., & Taha, I. M. (2019). Inflammatory markers and control of type 2 diabetes mellitus. Diabetes and Metabolic Syndrome, 13(1), 800-804. https://doi.org/10.1016/j.dsx.2018.11.061
Ghodsi, R., HamayeliMeharbani, H., Avand, A.-Q., Bordbar, A., & Ahmadzadeh, S. (2014). A study on the prevalence of diabetic complications in Fasa Diabetes Clinic. Asian Journal of Medical and Pharmaceutical Researches, 4(1), 68-72.
Grant, R. W., Pabon-Nau, L., Ross, K. M., Youatt, E. J., Pandiscio, J. C., & Park, E. R. (2011). Diabetes oral medication initiation and intensification: Patient views compared with current treatment guidelines. The Diabetes Education, 37(1), 78-84. https://doi.org/10.1177/0145721710388427
Halim, M., & Halim, A. (2019). The effects of inflammation, aging and oxidative stress on the pathogenesis of diabetes mellitus (type 2 diabetes). Diabetes and Metabolic Syndrome, 13(2), 1165-1172. https://doi.org/10.1016/j.dsx.2019.01.040
He, Y., Tan, D., Bai, B., Wu, Z., & Ji, S. (2017). Epigallocatechin-3-gallate attenuates acrylamide-induced apoptosis and astrogliosis in rat cerebral cortex. Toxicology Mechanisms and Methods, 27(4), 298-306. https://doi.org/10.1080/15376516.2017.1279251
Huang, D. W., Chang, W. C., Wu, S. B., Shih, R. W., & Shen, S. C. (2016). Vescalagin from pink wax apple [Syzygium samarangense (Blume) Merrill and Perry] alleviates hepatic insulin resistance and ameliorates glycemic metabolism abnormality in rats fed a high-fructose diet. Journal of Agricultural and Food Chemistry, 64(5), 1122-1129. https://doi.org/10.1021/acs.jafc.5b05558
Jakobek, L., Drenjančević, M., Jukić, V., & Šeruga, M. (2012). Phenolic acids, flavonols, anthocyanins and antiradical activity of “Nero,” “Viking,” “Galicianka” and wild chokeberries. Scientia Horticulturae, 147, 56-63. https://doi.org/10.1016/j.scienta.2012.09.006
Jayachandran, M., Zhang, T., Ganesan, K., Xu, B., & Chung, S. S. M. (2018). Isoquercetin ameliorates hyperglycemia and regulates key enzymes of glucose metabolism via insulin signaling pathway in streptozotocin-induced diabetic rats. European Journal of Pharmacology, 829, 112-120. https://doi.org/10.1016/j.ejphar.2018.04.015
Jin, D. X., He, J. F., Luo, X. G., & Zhang, T. C. (2019). Hypoglycemic effect of Hypericum attenuatum Choisy extracts on type 2 diabetes by regulating glucolipid metabolism and modulating gut microbiota. Journal of Functional Foods, 52, 479-491. https://doi.org/10.1016/j.jff.2018.11.031
Kadowaki, T. (2000). Insights into insulin resistance and type 2 diabetes from knockout mouse models. The Journal of Clinical Investigation, 106(4), 459-465. https://doi.org/10.1172/JCI10830
Kokotkiewicz, A., Jaremicz, Z., & Luczkiewicz, M. (2010). Aronia plants: A review of traditional use, biological activities, and perspectives for modern medicine. Journal of Medicinal Food, 13(2), 255-269. https://doi.org/10.1089/jmf.2009.0062
Kumashiro, N., Tamura, Y., Uchida, T., Ogihara, T., Fujitani, Y., Hirose, T., … Watada, H. (2008). Impact of oxidative stress and peroxisome proliferator-activated receptor gamma co-activator-1alpha in hepatic insulin resistance. Diabetes, 57(8), 2083-2091. https://doi.org/10.2337/db08-0144
Lee, H., Kim, J., An, J., Lee, S., Kong, H., Song, Y., … Kim, K. (2019). Amelioration of hyperglycemia by Rubus occidentalis (black raspberry) and increase in short-chain fatty acids producing bacteria. Journal of Functional Foods, 54, 433-439. https://doi.org/10.1016/j.jff.2019.01.045
Li, P., Tang, Y., Liu, L., Wang, D., Zhang, L., & Piao, C. (2019). Therapeutic potential of buckwheat hull flavonoids in db/db mice, a model of type 2 diabetes. Journal of Functional Foods, 52, 284-290. https://doi.org/10.1016/j.jff.2018.11.011
Lingvay, I., Raskin, P., & Szczepaniak, L. S. (2007). Effect of insulin-metformin combination on hepatic steatosis in patients with type 2 diabetes: Treatment of hepatic steatosis in diabetes. Journal of Diabetes and its Complications, 21(3), 137-142. https://doi.org/10.1016/j.jdiacomp.2007.02.005
Liu, S., You, L., Zhao, Y., & Chang, X. (2018). Wild Lonicera caerulea berry polyphenol extract reduces cholesterol accumulation and enhances antioxidant capacity in vitro and in vivo. Food Research International, 107, 73-83. https://doi.org/10.1016/j.foodres.2018.02.016
Liu, X., Zhang, J., Li, Y., Sun, L., Xiao, Y., Gao, W., & Zhang, Z. (2019). Mogroside derivatives exert hypoglycemics effects by decreasing blood glucose level in HepG2 cells and alleviates insulin resistance in T2DM rats. Journal of Functional Foods, 63, 103566. https://doi.org/10.1016/j.jff.2019.103566
Liu, Y., Dong, M., Yang, Z., & Pan, S. (2016). Anti-diabetic effect of citrus pectin in diabetic rats and potential mechanism via PI3K/Akt signaling pathway. International Journal of Biological Macromolecules, 89, 484-488. https://doi.org/10.1016/j.ijbiomac.2016.05.015
Malinowska, J., Babicz, K., Olas, B., Stochmal, A., & Oleszek, W. (2012). Aronia melanocarpa extract suppresses the biotoxicity of homocysteine and its metabolite on the hemostatic activity of fibrinogen and plasma. Nutrition, 28(7-8), 793-798. https://doi.org/10.1016/j.nut.2011.10.012
Mokashi, P., Khanna, A., & Pandita, N. (2017). Flavonoids from Enicostema littorale blume enhances glucose uptake of cells in insulin resistant human liver cancer (HepG2) cell line via IRS-1/PI3K/Akt pathway. Biomedicine and Pharmacotherapy, 90, 268-277. https://doi.org/10.1016/j.biopha.2017.03.047
Mu, W., Cheng, X. F., Liu, Y., Lv, Q. Z., Liu, G. L., Zhang, J. G., & Li, X. Y. (2018). Potential nexus of non-alcoholic fatty liver disease and type 2 diabetes mellitus: Insulin resistance between hepatic and peripheral tissues. Frontiers in Pharmacology, 9, 1566. https://doi.org/10.3389/fphar.2018.01566
Nie, X. Q., Chen, H. H., Zhang, J. Y., Zhang, Y. J., Yang, J. W., Pan, H. J., … Bian, K. (2016). Rutaecarpine ameliorates hyperlipidemia and hyperglycemia in fat-fed, streptozotocin-treated rats via regulating the IRS-1/PI3K/Akt and AMPK/ACC2 signaling pathways. Acta Pharmacologica Sinica, 37(4), 483-496. https://doi.org/10.1038/aps.2015.167
Ning, C., Wang, X., Gao, S., Mu, J., Wang, Y., Liu, S., … Meng, X. (2017). Chicory inulin ameliorates type 2 diabetes mellitus and suppresses JNK and MAPK pathways in vivo and in vitro. Molecular Nutrition and Food Research, 61(8), 28105758. https://doi.org/10.1002/mnfr.201600673
Perry, R. J., Samuel, V. T., Petersen, K. F., & Shulman, G. I. (2014). The role of hepatic lipids in hepatic insulin resistance and type 2 diabetes. Nature, 510(7503), 84-91. https://doi.org/10.1038/nature13478
Qin, B., & Anderson, R. A. (2012). An extract of chokeberry attenuates weight gain and modulates insulin, adipogenic and inflammatory signalling pathways in epididymal adipose tissue of rats fed a fructose-rich diet. British Journal of Nutrition, 108(4), 581-587. https://doi.org/10.1017/S000711451100599X
Ravikumar, B., Gerrard, J., Dalla Man, C., Firbank, M. J., Lane, A., English, P. T., … Taylor, R. (2008). Pioglitazone decreases fasting and postprandial endogenous glucose production in proportion to decrease in hepatic triglyceride content. Diabetes, 57(9), 2288-2295. https://doi.org/10.2337/db07-1828
Ren, Z.-Q., Zhang, P.-B., Zhang, X.-Z., Chen, S.-K., Zhang, H., Lv, D.-T., … Zhang, C. (2015). Duodenal-jejunal exclusion improves insulin resistance in type 2 diabetic rats by upregulating the hepatic insulin signaling pathway. Nutrition, 31(5), 733-739. https://doi.org/10.1016/j.nut.2014.10.012
Roden, M. (2006). Mechanisms of disease: Hepatic steatosis in type 2 diabetes-Pathogenesis and clinical relevance. Nature Clinical Practice. Endocrinology and Metabolism, 2(6), 335-348. https://doi.org/10.1038/ncpendmet0190
Rop, O., Mlcek, J., Jurikova, T., Valsikova, M., Sochor, J., Reznicek, V., & Kramarova, D. (2010). Phenolic content, antioxidant capacity, radical oxygen species scavenging and lipid peroxidation inhibiting activities of extracts of five black chokeberry (Aronia melanocarpa (Michx.) Elliot) cultivars. Journal of Medicinal Plants Research, 4(22), 2431-2437.
Rugină, D., Diaconeasa, Z., Coman, C., Bunea, A., Socaciu, C., & Pintea, A. (2015). Chokeberry anthocyanin extract as pancreatic β-cell protectors in two models of induced oxidative stress. Oxidative Medicine and Cellular Longevity, 2015, 429075. https://doi.org/10.1155/2015/429075
Sankaranarayanan, C., Nishanthi, R., & Pugalendi, P. (2018). Ameliorating effect of berbamine on hepatic key enzymes of carbohydrate metabolism in high-fat diet and streptozotocin induced type 2 diabetic rats. Biomedicine and Pharmacotherapy, 103, 539-545. https://doi.org/10.1016/j.biopha.2018.04.066
Sidor, A., Drożdżyńska, A., & Gramza-Michałowska, A. (2019). Black chokeberry (Aronia melanocarpa) and its products as potential health-promoting factors: An overview. Trend in Food Science & Technology, 89, 45-60. https://doi.org/10.1016/j.tifs.2019.05.006
Sodagari, H. R., Farzaei, M. H., Bahramsoltani, R., Abdolghaffari, A. H., Mahmoudi, M., & Rezaei, N. (2015). Dietary anthocyanins as a complementary medicinal approach for management of inflammatory bowel disease. Expert Review of Gastroenterology and Hepatology, 9(6), 807-820. https://doi.org/10.1586/17474124.2015
Song, J. J., Gao, J., Du, M., & Mao, X. Y. (2018). Casein glycomacropeptide hydrolysates ameliorate hepatic insulin resistance of C57BL/6J mice challenged with high-fat diet. Journal of Functional Foods, 45, 190-198. https://doi.org/10.1016/j.jff.2018.03.044
Song, J. J., Wang, Q., Du, M., Li, T. G., Chen, B., & Mao, X. Y. (2017). Casein glycomacropeptide-derived peptide IPPKKNQDKTE ameliorates high glucose-induced insulin resistance in HepG2 cells via activation of AMPK signaling. Molecular Nutrition and Food Research, 61(2), 1600301. https://doi.org/10.1002/mnfr.201600301
Srinivasan, S., Sathish, G., Jayanthi, M., Muthukumaran, J., Muruganathan, U., & Ramachandran, V. (2014). Ameliorating effect of eugenol on hyperglycemia by attenuating the key enzymes of glucose metabolism in streptozotocin-induced diabetic rats. Molecular and Cellular Biochemistry, 385(1-2), 159-168. https://doi.org/10.1007/s11010-013-1824-2
Stahel, P., Kim, J. J., Cieslar, S. R. L., Warrington, J. M., Xiao, C., & Cant, J. P. (2017). Supranutritional selenium intake from enriched milk casein impairs hepatic insulin sensitivity via attenuated IRS/PI3K/akt signaling and decreased PGC-1α expression in male Sprague-Dawley rats. The Journal of Nutritional Biochemistry, 41, 142-150. https://doi.org/10.1016/j.jnutbio.2016.12.012
Stull, A. J. (2016). Blueberries' impact on insulin resistance and glucose intolerance. Antioxidants (Basel), 5(4). https://doi.org/10.3390/antiox5040044
Sundaram, R., Shanthi, P., & Sachdanandam, P. (2014). Effect of tangeretin, a polymethoxylated flavone on glucose metabolism in streptozotocin-induced diabetic rats. Phytomedicine: International Journal of Phytotherapy and Phytopharmacology, 21(6), 793-799. https://doi.org/10.1016/j.phymed.2014.01.007
Thorens, B. (2014). GLUT2, glucose sensing and glucose homeostasis. Diabetologia, 58(2), 221-232. https://doi.org/10.1007/s00125-014-3451-1
Valcheva-Kuzmanova, S. V., Kuzmanov, K. A., Tancheva, S., & Belcheva, A. (2007). Hypoglycemic and hypolipidemic effects of Aronia Melanocarpa fruit juice in streptozocin-induced diabetic rats. Methods and Findings in Experimental and Clinical Pharmacology, 29(2), 101-105. https://doi.org/10.1358/mf.2007.29.2.1075349
Vendrame, S., Del Bo, C., Ciappellano, S., Riso, P., & Klimis-Zacas, D. (2016). Berry fruit consumption and metabolic syndrome. Antioxidants (Basel), 5(4). https://doi.org/10.3390/antiox5040034
Vinayagam, R., Jayachandran, M., Chung, S. S. M., & Xu, B. (2018). Guava leaf inhibits hepatic gluconeogenesis and increases glycogen synthesis via AMPK/ACC signaling pathways in streptozotocin-induced diabetic rats. Biomedicine and Pharmacotherapy, 103, 1012-1017. https://doi.org/10.1016/j.biopha.2018.04.127
Wang, H. Y., Li, Q. M., Yu, N. J., Chen, W. D., Zha, X. Q., Wu, D. L., … Luo, J. P. (2019). Dendrobium huoshanense polysaccharide regulates hepatic glucose homeostasis and pancreatic β-cell function in type 2 diabetic mice. Carbohydrate Polymers, 211, 39-48. https://doi.org/10.1016/j.carbpol.2019.01.101
Wang, K., Wang, H., Liu, Y., Shui, W., Wang, J., Cao, P., … Zhang, Y. (2018). Dendrobium officinale polysaccharide attenuates type 2 diabetes mellitus via the regulation of PI3K/Akt-mediated glycogen synthesis and glucose metabolism. Journal of Functional Foods, 40, 261-271. https://doi.org/10.1016/j.jff.2017.11.004
Wang, K., Tang, Z., Zheng, Z., Cao, P., Shui, W., Li, Q., & Zhang, Y. (2016a). Protective effects of Angelica sinensis polysaccharide against hyperglycemia and liver injury in multiple low-dose streptozotocin-induced type 2 diabetic BALB/c mice. Food & Function, 7(12), 4889-4897. https://doi.org/10.1039/c6fo01196a
Wang, Y., Li, B., Ma, Y., Wang, X., Zhang, X., Zhang, Q., & Meng, X. (2016b). Lonicera caerulea berry extract attenuates lipopolysaccharide induced inflammation in BRL-3A cells: Oxidative stress, energy metabolism, hepatic function. Journal of Functional Foods, 24, 1-10. https://doi.org/10.1016/j.jff.2016.03.023
Worsztynowicz, P., Napierała, M., Białas, W., Grajek, W., & Olkowicz, M. (2014). Pancreatic α-amylase and lipase inhibitory activity of polyphenolic compounds present in the extract of black chokeberry (Aronia melanocarpa L.). Process Biochemistry, 49(9), 1457-1463. https://doi.org/10.1016/j.procbio.2014.06.002
Xu, W., Zhou, Q., Yin, J. J., Yao, Y., & Zhang, J. L. (2015). Anti-diabetic effects of polysaccharides from Talinum triangulare in streptozotocin (STZ)-induced type 2 diabetic male mice. International Journal of Biological Macromolecules, 72, 575-579. https://doi.org/10.1016/j.ijbiomac.2014.09.011
Yamane, T., Kozuka, M., Konda, D., Nakano, Y., Nakagaki, T., Ohkubo, I., & Ariga, H. (2016). Improvement of blood glucose levels and obesity in mice given aronia juice by inhibition of dipeptidyl peptidase IV and α-glucosidase. The Journal of Nutritional Biochemistry, 31, 106-112. https://doi.org/10.1016/j.jnutbio.2016.02.004
Yan, J., Wang, C., Jin, Y., Meng, Q., Liu, Q., Liu, Z., … Sun, H. (2018). Catalpol ameliorates hepatic insulin resistance in type 2 diabetes through acting on AMPK/NOX4/PI3K/AKT pathway. Pharmacological Research, 130, 466-480. https://doi.org/10.1016/j.phrs.2017.12.026
Zhang, Q. Z., Luna-Vital, D., & Gonzalez de Mejia, E. G. (2019). Anthocyanins from colored maize ameliorated the inflammatory paracrine interplay between macrophages and adipocytes through regulation of NF-κB and JNK-dependent MAPK pathways. Journal of Functional Foods, 54, 175-186. https://doi.org/10.1016/j.jff.2019.01.016
Zhang, Q., Yuan, H., Zhang, C., Guan, Y., Wu, Y., Ling, F., … Li, Y. (2018a). Epigallocatechin gallate improves insulin resistance in HepG2 cells through alleviating inflammation and lipotoxicity. Diabetes Research and Clinical Practice, 142, 363-373. https://doi.org/10.1016/j.diabres.2018.06.017
Zhang, S., You, Y., Liu, J., Qin, X., & Liu, X. (2018b). Hypoglycaemic effect of capsaicinoids via elevation of insulin level and inhibition of glucose absorption in streptozotocin-induced diabetic rats. Journal of Functional Foods, 51, 94-103. https://doi.org/10.1016/j.jff.2018.10.015
Zhang, X., Lv, Q., Jia, S., Chen, Y., Sun, C., Li, X., & Chen, K. (2016). Effects of flavonoid-rich Chinese bayberry (Morella rubra Sieb. et Zucc.) fruit extract on regulating glucose and lipid metabolism in diabetic KK-Ay mice. Food and Function, 7(7), 3130-3140. https://doi.org/10.1039/c6fo00397d
Zhang, Y., Xu, W., Huang, X., Zhao, Y., Ren, Q., Hong, Z., … Xing, X. (2018c). Fucoxanthin ameliorates hyperglycemia, hyperlipidemia and insulin resistance in diabetic mice partially through IRS-1/PI3K/Akt and AMPK pathways. Journal of Functional Foods, 48, 515-524. https://doi.org/10.1016/j.jff.2018.07.048
Zhang, Z. F., Lu, J., Zheng, Y. L., Wu, D. M., Hu, B., Shan, Q., … Sun, Y. Y. (2013). Purple sweet potato color attenuates hepatic insulin resistance via blocking oxidative stress and endoplasmic reticulum stress in high-fat-diet-treated mice. The Journal of Nutritional Biochemistry, 24(6), 1008-1018. https://doi.org/10.1016/j.jnutbio.2012.07.009