Reliability of Vibroarthrography to Assess Knee Joint Sounds in Motion.
acoustic emission
crepitation
crepitus
knee noise
knee sound
measurement properties
vibroarthrographic
Journal
Sensors (Basel, Switzerland)
ISSN: 1424-8220
Titre abrégé: Sensors (Basel)
Pays: Switzerland
ID NLM: 101204366
Informations de publication
Date de publication:
02 Apr 2020
02 Apr 2020
Historique:
received:
25
02
2020
revised:
27
03
2020
accepted:
31
03
2020
entrez:
8
4
2020
pubmed:
8
4
2020
medline:
30
12
2020
Statut:
epublish
Résumé
Knee acoustic emissions provide information about joint health and loading in motion. As the reproducibility of knee acoustic emissions by vibroarthrography is yet unknown, we evaluated the intrasession and interday reliability of knee joint sounds. In 19 volunteers (25.6 ± 2.0 years, 11 female), knee joint sounds were recorded by two acoustic sensors (16,000 Hz; medial tibial plateau, patella). All participants performed four sets standing up/sitting down (five repetitions each). For measuring intrasession reliability, we used a washout phase of 30 min between the first three sets, and for interday reliability we used a washout phase of one week between sets 3 and 4. The mean amplitude (dB) and median power frequency (Hz, MPF) were analyzed for each set. Intraclass correlation coefficients (ICCs (2,1)), standard errors of measurement (SEMs), and coefficients of variability (CVs) were calculated. The intrasession ICCs ranged from 0.85 to 0.95 (tibia) and from 0.73 to 0.87 (patella). The corresponding SEMs for the amplitude were ≤1.44 dB (tibia) and ≤2.38 dB (patella); for the MPF, SEMs were ≤13.78 Hz (tibia) and ≤14.47 Hz (patella). The intrasession CVs were ≤0.06 (tibia) and ≤0.07 (patella) (
Identifiants
pubmed: 32252480
pii: s20071998
doi: 10.3390/s20071998
pmc: PMC7181296
pii:
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Références
Med Biol Eng Comput. 2018 Aug;56(8):1499-1514
pubmed: 29392547
Sensors (Basel). 2019 Jun 13;19(12):
pubmed: 31200593
J Electromyogr Kinesiol. 2004 Jun;14(3):333-42
pubmed: 15094147
IEEE J Biomed Health Inform. 2016 Sep;20(5):1265-72
pubmed: 27305689
J Electromyogr Kinesiol. 2005 Feb;15(1):102-10
pubmed: 15642658
J Electromyogr Kinesiol. 2013 Feb;23(1):216-22
pubmed: 22999075
Clin Biomech (Bristol, Avon). 2020 Feb;72:16-23
pubmed: 31794924
J Electromyogr Kinesiol. 1999 Oct;9(5):351-7
pubmed: 10527216
IEEE Trans Biomed Eng. 2016 Aug;63(8):1581-90
pubmed: 27008656
Clin Biomech (Bristol, Avon). 2020 Feb 8;74:1-7
pubmed: 32062324
J Electromyogr Kinesiol. 2015 Dec;25(6):860-9
pubmed: 26391454
Med Eng Phys. 2019 Mar;65:57-60
pubmed: 30685113
Ortop Traumatol Rehabil. 2018 Oct 31;20(5):409-419
pubmed: 30648664
J Clin Epidemiol. 2011 Jan;64(1):96-106
pubmed: 21130355
Front Physiol. 2018 Mar 29;9:309
pubmed: 29651252
Med Biol Eng Comput. 2018 Dec;56(12):2301-2312
pubmed: 29926251
BMC Musculoskelet Disord. 2019 Jan 31;20(1):48
pubmed: 30704430
J Electromyogr Kinesiol. 2013 Feb;23(1):230-7
pubmed: 23022477
J Bone Joint Surg Br. 1987 Mar;69(2):288-93
pubmed: 3818762
J Strength Cond Res. 2005 Feb;19(1):231-40
pubmed: 15705040
Med Eng Phys. 2009 Oct;31(8):1013-22
pubmed: 19643653
IEEE Trans Biomed Eng. 1996 Jan;43(1):15-23
pubmed: 8567002
J Electromyogr Kinesiol. 2011 Aug;21(4):579-86
pubmed: 21531148
Open Med Inform J. 2010 Jul 27;4:116-25
pubmed: 21379396
J Electromyogr Kinesiol. 2000 Jun;10(3):189-96
pubmed: 10818340