Cholinergic midbrain afferents modulate striatal circuits and shape encoding of action strategies.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
08 04 2020
08 04 2020
Historique:
received:
26
12
2019
accepted:
13
03
2020
entrez:
10
4
2020
pubmed:
10
4
2020
medline:
28
7
2020
Statut:
epublish
Résumé
Assimilation of novel strategies into a consolidated action repertoire is a crucial function for behavioral adaptation and cognitive flexibility. Acetylcholine in the striatum plays a pivotal role in such adaptation, and its release has been causally associated with the activity of cholinergic interneurons. Here we show that the midbrain, a previously unknown source of acetylcholine in the striatum, is a major contributor to cholinergic transmission in the striatal complex. Neurons of the pedunculopontine and laterodorsal tegmental nuclei synapse with striatal cholinergic interneurons and give rise to excitatory responses. Furthermore, they produce uniform inhibition of spiny projection neurons. Inhibition of acetylcholine release from midbrain terminals in the striatum impairs the association of contingencies and the formation of habits in an instrumental task, and mimics the effects observed following inhibition of acetylcholine release from striatal cholinergic interneurons. These results suggest the existence of two hierarchically-organized modes of cholinergic transmission in the striatum, where cholinergic interneurons are modulated by cholinergic neurons of the midbrain.
Identifiants
pubmed: 32269213
doi: 10.1038/s41467-020-15514-3
pii: 10.1038/s41467-020-15514-3
pmc: PMC7142106
doi:
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Langues
eng
Sous-ensembles de citation
IM
Pagination
1739Subventions
Organisme : NINDS NIH HHS
ID : R01 NS100824
Pays : United States
Références
Pakhotin, P. & Bracci, E. Cholinergic interneurons control the excitatory input to the striatum. J. Neurosci. 27, 391–400 (2007).
doi: 10.1523/JNEUROSCI.3709-06.2007
pubmed: 17215400
pmcid: 17215400
Oldenburg, I. A. & Ding, J. B. Cholinergic modulation of synaptic integration and dendritic excitability in the striatum. Curr. Opin. Neurobiol. 21, 425–432 (2011).
doi: 10.1016/j.conb.2011.04.004
pubmed: 21550798
pmcid: 21550798
Aoki, S., Liu, A. W., Zucca, A., Zucca, S. & Wickens, J. R. Role of striatal cholinergic interneurons in set-shifting in the rat. J. Neurosci. 35, 9424–9431 (2015).
doi: 10.1523/JNEUROSCI.0490-15.2015
pubmed: 26109665
pmcid: 26109665
McCool, M. F., Patel, S., Talati, R. & Ragozzino, M. E. Differential involvement of M1-type and M4-type muscarinic cholinergic receptors in the dorsomedial striatum in task switching. Neurobiol. Learn. Mem. 89, 114–124 (2008).
doi: 10.1016/j.nlm.2007.06.005
pubmed: 17709264
pmcid: 17709264
Graybiel, A. M., Baughman, R. W. & Eckenstein, F. Cholinergic neuropil of the striatum observes striosomal boundaries. Nature 323, 625–627 (1986).
doi: 10.1038/323625a0
pubmed: 3773990
pmcid: 3773990
Kubota, Y. & Kawaguchi, Y. Spatial distributions of chemically identified intrinsic neurons in relation to patch and matrix compartments of rat neostriatum. J. Comp. Neurol. 332, 499–513 (1993).
doi: 10.1002/cne.903320409
pubmed: 8349845
pmcid: 8349845
Matamales, M. et al. Quantitative Imaging of cholinergic interneurons reveals a distinctive spatial organization and a functional gradient across the mouse striatum. PLoS ONE 11, e0157682 (2016).
doi: 10.1371/journal.pone.0157682
pubmed: 27314496
pmcid: 27314496
Dautan, D. et al. A major external source of cholinergic innervation of the striatum and nucleus accumbens originates in the brainstem. J. Neurosci. 34, 4509–4518 (2014).
doi: 10.1523/JNEUROSCI.5071-13.2014
pubmed: 24671996
pmcid: 24671996
Cornwall, J., Cooper, J. D. & Phillipson, O. T. Afferent and efferent connections of the laterodorsal tegmental nucleus in the rat. Brain Res. Bull. 25, 271–284 (1990).
doi: 10.1016/0361-9230(90)90072-8
pubmed: 1699638
pmcid: 1699638
Nakano, K. et al. Topographical projections from the thalamus, subthalamic nucleus and pedunculopontine tegmental nucleus to the striatum in the Japanese monkey, Macaca fuscata. Brain Res. 537, 54–68 (1990).
doi: 10.1016/0006-8993(90)90339-D
pubmed: 1707734
pmcid: 1707734
Saper, C. B. & Loewy, A. D. Projections of the pedunculopontine tegmental nucleus in the rat: evidence for additional extrapyramidal circuitry. Brain Res. 252, 367–372 (1982).
doi: 10.1016/0006-8993(82)90404-8
pubmed: 7150958
pmcid: 7150958
Smith, Y. & Parent, A. Differential connections of caudate nucleus and putamen in the squirrel monkey (Saimiri sciureus). Neuroscience 18, 347–371 (1986).
doi: 10.1016/0306-4522(86)90159-4
pubmed: 3736862
pmcid: 3736862
Wall, N., DeLaParra, M., Callaway, E. & Kreitzer, A. Differential innervation of direct- and indirect-pathway striatal projection neurons. Neuron 79, 347–360 (2013).
doi: 10.1016/j.neuron.2013.05.014
pubmed: 3729794
pmcid: 3729794
Hunnicutt, B. J. et al. A comprehensive excitatory input map of the striatum reveals novel functional organization. Elife 5, p19103 (2016).
doi: 10.7554/eLife.19103
Petzold, A., Valencia, M., Pal, B. & Mena-Segovia, J. Decoding brain state transitions in the pedunculopontine nucleus: cooperative phasic and tonic mechanisms. Front. Neural Circuits 9, 68 (2015).
doi: 10.3389/fncir.2015.00068
pubmed: 26582977
pmcid: 26582977
Boucetta, S., Cissé, Y., Mainville, L., Morales, M. & Jones, B. E. Discharge profiles across the sleep–waking cycle of identified cholinergic, GABAergic, and glutamatergic neurons in the pontomesencephalic tegmentum of the rat. J. Neurosci. 34, 4708–4727 (2014).
doi: 10.1523/JNEUROSCI.2617-13.2014
pubmed: 24672016
pmcid: 24672016
Cox, J., Pinto, L. & Dan, Y. Calcium imaging of sleep–wake related neuronal activity in the dorsal pons. Nat. Commun. 7, 10763 (2016).
doi: 10.1038/ncomms10763
pubmed: 26911837
pmcid: 26911837
Furman, M. et al. Optogenetic stimulation of cholinergic brainstem neurons during focal limbic seizures: effects on cortical physiology. Epilepsia 56, e198–e202 (2015).
doi: 10.1111/epi.13220
pubmed: 26530287
pmcid: 26530287
Dautan, D. et al. Segregated cholinergic transmission modulates dopamine neurons integrated in distinct functional circuits. Nat. Neurosci. 19, 1025–1033 (2016).
doi: 10.1038/nn.4335
pubmed: 27348215
pmcid: 27348215
Xiao, C. et al. Cholinergic mesopontine signals govern locomotion and reward through dissociable midbrain pathways. Neuron 90, 333–347 (2016).
doi: 10.1016/j.neuron.2016.03.028
pubmed: 27100197
pmcid: 27100197
Mena-Segovia, J. & Bolam, J. P. Rethinking the pedunculopontine nucleus: from cellular organization to function. Neuron 94, 7–18 (2017).
doi: 10.1016/j.neuron.2017.02.027
pubmed: 28384477
pmcid: 28384477
Tepper, J. M., Abercrombie, E. D. & Bolam, J. P. Basal ganglia macrocircuits. Prog. Brain Res. 160, 3–7 (2007).
doi: 10.1016/S0079-6123(06)60001-0
pubmed: 17499105
pmcid: 17499105
Sharott, A., Doig, N. M., Mallet, N. & Magill, P. J. Relationships between the firing of identified striatal interneurons and spontaneous and driven cortical activities in vivo. J. Neurosci. 32, 13221–13236 (2012).
doi: 10.1523/JNEUROSCI.2440-12.2012
pubmed: 22993438
pmcid: 22993438
Bertran-Gonzalez, J., Chieng, B. C., Laurent, V., Valjent, E. & Balleine, B. W. Striatal cholinergic interneurons display activity-related phosphorylation of ribosomal protein S6. PLoS ONE 7, e53195 (2012).
doi: 10.1371/journal.pone.0053195
pubmed: 23285266
pmcid: 23285266
Lee, K. et al. Parvalbumin interneurons modulate striatal output and enhance performance during associative learning. Neuron 93, 1451–1463.e4 (2017).
doi: 10.1016/j.neuron.2017.02.033
pubmed: 28334608
pmcid: 28334608
Xiao, C. et al. Chronic nicotine selectively enhances 4 2* nicotinic acetylcholine receptors in the nigrostriatal dopamine pathway. J. Neurosci. 29, 12428–12439 (2009).
doi: 10.1523/JNEUROSCI.2939-09.2009
pubmed: 19812319
pmcid: 19812319
McGehee, D., Heath, M., Gelber, S., Devay, P. & Role, L. Nicotine enhancement of fast excitatory synaptic transmission in CNS by presynaptic receptors. Science (80-.) 269, 1692–1696 (1995).
doi: 10.1126/science.7569895
Tanimura, A., Du, Y., Kondapalli, J., Wokosin, D. L. & Surmeier, D. J. Cholinergic interneurons amplify thalamostriatal excitation of striatal indirect pathway neurons in Parkinson’s disease models. Neuron 101, 444–458.e6 (2019).
doi: 10.1016/j.neuron.2018.12.004
pubmed: 30658860
pmcid: 30658860
Huerta-Ocampo, I., Hacioglu-Bay, H., Dautan, D. & Mena-Segovia, J. Distribution of midbrain cholinergic axons in the thalamus. eNeuro. 7, 0454-19.2019 (2020).
doi: 10.1523/ENEURO.0454-19.2019
Gonzales, K. K. & Smith, Y. Cholinergic interneurons in the dorsal and ventral striatum: anatomical and functional considerations in normal and diseased conditions. Ann. N. Y. Acad. Sci. 1349, 1–45 (2015).
doi: 10.1111/nyas.12762
pubmed: 25876458
pmcid: 25876458
Stachniak, T. J., Trudel, E. & Bourque, C. W. Cell-specific retrograde signals mediate antiparallel effects of angiotensin II on osmoreceptor afferents to vasopressin and oxytocin neurons. Cell Rep. 8, 355–362 (2014).
doi: 10.1016/j.celrep.2014.06.029
pubmed: 25043186
pmcid: 25043186
Gremel, C. M. & Costa, R. M. Orbitofrontal and striatal circuits dynamically encode the shift between goal-directed and habitual actions. Nat. Commun. 4, 2264 (2013).
doi: 10.1038/ncomms3264
pubmed: 23921250
pmcid: 23921250
Gremel, C. M. et al. Endocannabinoid modulation of orbitostriatal circuits gates habit formation. Neuron 90, 1312–1324 (2016).
doi: 10.1016/j.neuron.2016.04.043
pubmed: 4911264
pmcid: 4911264
Bradfield, L. A., Bertran-Gonzalez, J., Chieng, B. & Balleine, B. W. The thalamostriatal pathway and cholinergic control of goal-directed action: interlacing new with existing learning in the striatum. Neuron 79, 153–166 (2013).
doi: 10.1016/j.neuron.2013.04.039
Bradfield, L. A. & Balleine, B. W. Thalamic control of dorsomedial striatum regulates internal state to guide goal-directed action selection. J. Neurosci. 3860-16, https://doi.org/10.1523/JNEUROSCI.3860-16.2017 (2017).
Wilson, D. I., MacLaren, D. A. & Winn, P. Bar pressing for food: differential consequences of lesions to the anterior versus posterior pedunculopontine. Eur. J. Neurosci. 30, 504–513 (2009).
doi: 10.1111/j.1460-9568.2009.06836.x
MacLaren, D. A. A., Markovic, T., Daniels, D. & Clark, S. D. Enhanced consumption of salient solutions following pedunculopontine tegmental lesions. Neuroscience 284, 381–399 (2015).
doi: 10.1016/j.neuroscience.2014.09.075
Halbout, B., Liu, A. T. & Ostlund, S. B. A closer look at the effects of repeated cocaine exposure on adaptive decision-making under conditions that promote goal-directed control. Front. Psychiatry 7, 44 (2016).
doi: 10.3389/fpsyt.2016.00044
pubmed: 4800177
pmcid: 4800177
Hilário, M. R. F. Endocannabinoid signaling is critical for habit formation. Front. Integr. Neurosci. 1, 6 (2007).
doi: 10.3389/neuro.07.006.2007
pubmed: 2526012
pmcid: 2526012
Dickinson, A. Actions and habits: the development of behavioural autonomy. Philos. Trans. R. Soc. B 308, 67–78 (1985).
Hilario, M., Holloway, T., Jin, X. & Costa, R. M. Different dorsal striatum circuits mediate action discrimination and action generalization. Eur. J. Neurosci. 35, 1105–1114 (2012).
doi: 10.1111/j.1460-9568.2012.08073.x
pubmed: 22487040
pmcid: 22487040
Yamamoto, K., Ebihara, K., Koshikawa, N. & Kobayashi, M. Reciprocal regulation of inhibitory synaptic transmission by nicotinic and muscarinic receptors in rat nucleus accumbens shell. J. Physiol. 591, 5745–5763 (2013).
doi: 10.1113/jphysiol.2013.258558
pubmed: 24018951
pmcid: 24018951
English, D. F. et al. GABAergic circuits mediate the reinforcement-related signals of striatal cholinergic interneurons. Nat. Neurosci. 15, 123–130 (2012).
doi: 10.1038/nn.2984
Sullivan, M. A., Chen, H. & Morikawa, H. Recurrent inhibitory network among striatal cholinergic interneurons. J. Neurosci. 28, 8682–8690 (2008).
doi: 10.1523/JNEUROSCI.2411-08.2008
pubmed: 18753369
pmcid: 18753369
Faust, T. W., Assous, M., Shah, F., Tepper, J. M. & Koos, T. Novel fast adapting interneurons mediate cholinergic-induced fast GABAA inhibitory postsynaptic currents in striatal spiny neurons. Eur. J. Neurosci. 42, 1764–1774 (2015).
doi: 10.1111/ejn.12915
pubmed: 25865337
pmcid: 25865337
Malenka, R. C. & Kocsis, J. D. Presynaptic actions of carbachol and adenosine on corticostriatal synaptic transmission studied in vitro. J. Neurosci. 8, 3750–3756 (1988).
doi: 10.1523/JNEUROSCI.08-10-03750.1988
pubmed: 2848109
pmcid: 2848109
Threlfell, S. et al. Striatal dopamine release is triggered by synchronized activity in cholinergic interneurons. Neuron 75, 58–64 (2012).
doi: 10.1016/j.neuron.2012.04.038
Cachope, R. et al. Selective activation of cholinergic interneurons enhances accumbal phasic dopamine release: setting the tone for reward processing. Cell Rep. 2, 33–41 (2012).
doi: 10.1016/j.celrep.2012.05.011
pubmed: 22840394
pmcid: 22840394
Brimblecombe, K. R. et al. Targeted activation of cholinergic interneurons accounts for the modulation of dopamine by striatal nicotinic receptors. eNeuro 5, ENEURO.0397-17.2018 (2018).
Assous, M., Dautan, D., Tepper, J. M. & Mena-Segovia, J. Pedunculopontine glutamatergic neurons provide a novel source of feedforward inhibition in the striatum by selectively targeting interneurons. J. Neurosci. 39, 4727–4737 (2019).
doi: 10.1523/JNEUROSCI.2913-18.2019
pubmed: 30952811
pmcid: 30952811
Faust, T. W., Assous, M., Tepper, J. M. & Koós, T. Neostriatal GABAergic interneurons mediate cholinergic inhibition of spiny projection neurons. J. Neurosci. 36, 9505–9511 (2016).
doi: 10.1523/JNEUROSCI.0466-16.2016
pubmed: 27605623
pmcid: 27605623
Guo, Q. et al. Whole-brain mapping of inputs to projection neurons and cholinergic interneurons in the dorsal striatum. PLoS ONE 10, e0123381 (2015).
doi: 10.1371/journal.pone.0123381
pubmed: 25830919
pmcid: 25830919
Doig, N. M., Magill, P. J., Apicella, P., Bolam, J. P. & Sharott, A. Cortical and thalamic excitation mediate the multiphasic responses of striatal cholinergic interneurons to motivationally salient stimuli. J. Neurosci. 34, 3101–3117 (2014).
doi: 10.1523/JNEUROSCI.4627-13.2014
pubmed: 24553950
pmcid: 24553950
Smith, Y. et al. The thalamostriatal system in normal and diseased states. Front. Syst. Neurosci. 8, 5 (2014).
pubmed: 24523677
pmcid: 24523677
Shink, E., Sidibe, M. & Smith, Y. Efferent connections of the internal globus pallidus in the squirrel monkey: II. Topography and synaptic organization of pallidal efferents to the pedunculopontine nucleus. J. Comp. Neurol. 382, 348–363 (1997).
doi: 10.1002/(SICI)1096-9861(19970609)382:3<348::AID-CNE4>3.0.CO;2-3
pubmed: 9183698
pmcid: 9183698
Noda, T. & Oka, H. Distribution and morphology of tegmental neurons receiving nigral inhibitory inputs in the cat: an intracellular HRP study. J. Comp. Neurol. 244, 254–266 (1986).
doi: 10.1002/cne.902440211
pubmed: 3950097
pmcid: 3950097
Martinez-Gonzalez, C., Bolam, J. P. & Mena-Segovia, J. Topographical organization of the pedunculopontine nucleus. Front Neuroanat. 5, 22 (2011).
doi: 10.3389/fnana.2011.00022
pubmed: 21503154
pmcid: 21503154
Lim, S. A. O., Kang, U. J. & McGehee, D. S. Striatal cholinergic interneuron regulation and circuit effects. Front. Synaptic Neurosci. 6, 22 (2014).
doi: 10.3389/fnsyn.2014.00022
pubmed: 25374536
pmcid: 25374536
Wilson, C. J., Chang, H. T. & Kitai, S. T. Firing patterns and synaptic potentials of identified giant aspiny interneurons in the rat neostriatum. J. Neurosci. 10, 508–519 (1990).
doi: 10.1523/JNEUROSCI.10-02-00508.1990
pubmed: 2303856
pmcid: 2303856
Goldberg, J. A. & Reynolds, J. N. Spontaneous firing and evoked pauses in the tonically active cholinergic interneurons of the striatum. Neuroscience 198, 27–43 (2011).
doi: 10.1016/j.neuroscience.2011.08.067
pubmed: 21925242
pmcid: 21925242
Takakusaki, K. & Kitai, S. T. Ionic mechanisms involved in the spontaneous firing of tegmental pedunculopontine nucleus neurons of the rat. Neuroscience 78, 771–794 (1997).
doi: 10.1016/S0306-4522(96)00540-4
pubmed: 9153657
pmcid: 9153657
Bordas, C., Kovacs, A. & Pal, B. The M-current contributes to high threshold membrane potential oscillations in a cell type-specific way in the pedunculopontine nucleus of mice. Front. Cell. Neurosci. 9, 121 (2015).
doi: 10.3389/fncel.2015.00121
pubmed: 25904846
pmcid: 25904846
Apicella, P. The role of the intrinsic cholinergic system of the striatum: what have we learned from TAN recordings in behaving animals? Neuroscience 360, 81–94 (2017).
doi: 10.1016/j.neuroscience.2017.07.060
pubmed: 28768155
pmcid: 28768155
Apicella, P., Ravel, S., Deffains, M. & Legallet, E. The role of striatal tonically active neurons in reward prediction error signaling during instrumental task performance. J. Neurosci. 31, 1507–1515 (2011).
doi: 10.1523/JNEUROSCI.4880-10.2011
pubmed: 21273435
pmcid: 21273435
Ding, J. B., Guzman, J. N., Peterson, J. D., Goldberg, J. A. & Surmeier, D. J. Thalamic gating of corticostriatal signaling by cholinergic interneurons. Neuron 67, 294–307 (2010).
doi: 10.1016/j.neuron.2010.06.017
pubmed: 20670836
pmcid: 20670836
Okada, K., Toyama, K., Inoue, Y., Isa, T. & Kobayashi, Y. Different pedunculopontine tegmental neurons signal predicted and actual task rewards. J. Neurosci. 29, 4858–4870 (2009).
doi: 10.1523/JNEUROSCI.4415-08.2009
pubmed: 19369554
pmcid: 19369554
MacLaren, D. A., Santini, J. A., Russell, A. L., Markovic, T. & Clark, S. D. Deficits in motor performance after pedunculopontine lesions in rats-impairment depends on demands of task. Eur. J. Neurosci. 40, 3224–3236 (2014).
doi: 10.1111/ejn.12666
pubmed: 24995993
pmcid: 24995993
Syed, A., Baker, P. M. & Ragozzino, M. E. Pedunculopontine tegmental nucleus lesions impair probabilistic reversal learning by reducing sensitivity to positive reward feedback. Neurobiol. Learn. Mem. 131, 1–8 (2016).
doi: 10.1016/j.nlm.2016.03.010
pubmed: 26976089
pmcid: 26976089
Leblond, M., Sukharnikova, T., Yu, C., Rossi, M. A. & Yin, H. H. The role of pedunculopontine nucleus in choice behavior under risk. Eur. J. Neurosci. 39, 1664–1670 (2014).
doi: 10.1111/ejn.12529
pubmed: 24617747
pmcid: 24617747
MacLaren, D. A. A., Wilson, D. I. G. & Winn, P. Updating of action-outcome associations is prevented by inactivation of the posterior pedunculopontine tegmental nucleus. Neurobiol. Learn. Mem. 102, 28–33 (2013).
doi: 10.1016/j.nlm.2013.03.002
pubmed: 23567109
pmcid: 23567109
Ragozzino, M. E., Mohler, E. G., Prior, M., Palencia, C. A. & Rozman, S. Acetylcholine activity in selective striatal regions supports behavioral flexibility. Neurobiol. Learn. Mem. 91, 13–22 (2009).
doi: 10.1016/j.nlm.2008.09.008
pubmed: 18845266
pmcid: 18845266
Matamales, M. et al. Aging-related dysfunction of striatal cholinergic interneurons produces conflict in action selection. Neuron 90, 362–373 (2016).
doi: 10.1016/j.neuron.2016.03.006
pubmed: 27100198
pmcid: 27100198
Lammel, S. et al. Input-specific control of reward and aversion in the ventral tegmental area. Nature 491, 212–217 (2012).
doi: 10.1038/nature11527
pubmed: 23064228
pmcid: 23064228
Okada, K. et al. Enhanced flexibility of place discrimination learning by targeting striatal cholinergic interneurons. Nat. Commun. 5, 3778 (2014).
doi: 10.1038/ncomms4778
pubmed: 24797209
pmcid: 24797209
Assous, M. et al. Differential processing of thalamic information via distinct striatal interneuron circuits. Nat. Commun. 8, 15860 (2017).
doi: 10.1038/ncomms15860
pubmed: 28604688
pmcid: 28604688
Holly, E. N. et al. Striatal low-threshold spiking interneurons regulate goal-directed learning. Neuron 103, 92–101.e6 (2019).
doi: 10.1016/j.neuron.2019.04.016
pubmed: 31097361
pmcid: 31097361
Steidl, S., Wang, H., Ordonez, M., Zhang, S. & Morales, M. Optogenetic excitation in the ventral tegmental area of glutamatergic or cholinergic inputs from the laterodorsal tegmental area drives reward. Eur. J. Neurosci. 45, 559–571 (2017).
doi: 10.1111/ejn.13436
pubmed: 27740714
pmcid: 27740714
Bolam, J. P., Francis, C. M. & Henderson, Z. Cholinergic input to dopaminergic neurons in the substantia nigra: a double immunocytochemical study. Neuroscience 41, 483–494 (1991).
doi: 10.1016/0306-4522(91)90343-M
Gould, E., Woolf, N. J. & Butcher, L. L. Cholinergic projections to the substantia nigra from the pedunculopontine and nuclei. Neuroscience. 28, 611–623 (1989).
doi: 10.1016/0306-4522(89)90008-0
Oakman, S. A., Faris, P. L., Kerr, P. E., Cozzari, C. & Hartman, B. K. Distribution of pontomesencephalic cholinergic neurons projecting to substantia nigra differs significantly from those projecting to ventral tegmental area. J. Neurosci. 15, 5859–5869 (1995).
doi: 10.1523/JNEUROSCI.15-09-05859.1995
pubmed: 7666171
pmcid: 7666171
Lapper, S. R. & Bolam, J. P. Input from the frontal cortex and the parafascicular nucleus to cholinergic interneurons in the dorsal striatum of the rat. Neuroscience 51, 533–545 (1992).
doi: 10.1016/0306-4522(92)90293-B
Klug, J. R. et al. Differential inputs to striatal cholinergic and parvalbumin interneurons imply functional distinctions. Elife 7, E35657 (2018).
doi: 10.7554/eLife.35657
pubmed: 29714166
pmcid: 29714166
Yau, H.-J. et al. Pontomesencephalic tegmental afferents to VTA non-dopamine neurons are necessary for appetitive pavlovian learning. Cell Rep. 16, 2699–2710, https://doi.org/10.1016/j.celrep.2016.08.007 (2016).
Hong, S. & Hikosaka, O. Pedunculopontine tegmental nucleus neurons provide reward, sensorimotor, and alerting signals to midbrain dopamine neurons. Neuroscience 282C, 139–155 (2014).
doi: 10.1016/j.neuroscience.2014.07.002
Tian, J. et al. Distributed and mixed information in monosynaptic inputs to dopamine neurons. Neuron 91, 1374–1389 (2016).
doi: 10.1016/j.neuron.2016.08.018
pubmed: 27618675
pmcid: 27618675
Witten, I. B. et al. Recombinase-driver rat lines: tools, techniques, and optogenetic application to dopamine-mediated reinforcement. Neuron 72, 721–733 (2011).
doi: 10.1016/j.neuron.2011.10.028
pubmed: 22153370
pmcid: 22153370
Gradinaru, V. et al. Molecular and cellular approaches for diversifying and extending optogenetics. Cell 141, 154–165 (2010).
doi: 10.1016/j.cell.2010.02.037
pubmed: 20303157
pmcid: 20303157
Hara, K. & Harris, R. A. The anesthetic mechanism of urethane: the effects on neurotransmitter-gated ion channels. Anesth. Analg. 94, 313–318 (2002).
pubmed: 11812690
pmcid: 11812690
Pinault, D. A novel single-cell staining procedure performed in vivo under electrophysiological control: morpho-functional features of juxtacellularly labeled thalamic cells and other central neurons with biocytin or Neurobiotin. J Neurosci Methods 65, 113–136 (1996).
doi: 10.1016/0165-0270(95)00144-1
pubmed: 8740589
pmcid: 8740589
Saund, J. et al. Thalamic inputs to dorsomedial striatum are involved in inhibitory control: evidence from the five-choice serial reaction time task in rats. Psychopharmacology 234, 2399–2407 (2017).
doi: 10.1007/s00213-017-4627-4
pubmed: 28451710
pmcid: 28451710
Adler, A., Katabi, S., Finkes, I., Prut, Y. & Bergman, H. Different correlation patterns of cholinergic and GABAergic interneurons with striatal projection neurons. Front. Syst. Neurosci. 7, 47 (2013).
doi: 10.3389/fnsys.2013.00047
pubmed: 24027501
pmcid: 24027501
Paxinos, G. & Watson, C. The Rat Brain in Stereotaxic Coordinates (Academic Press, London, 2007).