Mutually exclusive locales for N-linked glycans and disorder in human glycoproteins.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
08 04 2020
Historique:
received: 20 06 2019
accepted: 30 01 2020
entrez: 10 4 2020
pubmed: 10 4 2020
medline: 15 12 2020
Statut: epublish

Résumé

Several post-translational protein modifications lie predominantly within regions of disorder: the biased localization has been proposed to expand the binding versatility of disordered regions. However, investigating a representative dataset of 500 human N-glycoproteins, we observed the sites of N-linked glycosylations or N-glycosites, to be predominantly present in the regions of predicted order. When compared with disordered stretches, ordered regions were not found to be enriched for asparagines, serines and threonines, residues that constitute the sequon signature for conjugation of N-glycans. We then investigated the basis of mutual exclusivity between disorder and N-glycosites on the basis of amino acid distribution: when compared with control ordered residue stretches without any N-glycosites, residue neighborhoods surrounding N-glycosites showed a depletion of bulky, hydrophobic and disorder-promoting amino acids and an enrichment for flexible and accessible residues that are frequently found in coiled structures. When compared with control disordered residue stretches without any N-glycosites, N-glycosite neighborhoods were depleted of charged, polar, hydrophobic and flexible residues and enriched for aromatic, accessible and order-promoting residues with a tendency to be part of coiled and β structures. N-glycosite neighborhoods also showed greater phylogenetic conservation among amniotes, compared with control ordered regions, which in turn were more conserved than disordered control regions. Our results lead us to propose that unique primary structural compositions and differential propensities for evolvability allowed for the mutual spatial exclusion of N-glycosite neighborhoods and disordered stretches.

Identifiants

pubmed: 32269229
doi: 10.1038/s41598-020-61427-y
pii: 10.1038/s41598-020-61427-y
pmc: PMC7142085
doi:

Substances chimiques

Glycoproteins 0
Polysaccharides 0
Asparagine 7006-34-0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

6040

Subventions

Organisme : DBT-Wellcome Trust India Alliance
ID : IA/I/17/2/503312
Pays : India

Commentaires et corrections

Type : ErratumIn

Références

Khoury, G. A., Baliban, R. C. & Floudas, C. A. Proteome-wide post-translational modification statistics: frequency analysis and curation of the swiss-prot database. Scientific reports 1, https://doi.org/10.1038/srep00090 (2011).
Jaramillo, M. L. et al. Exploring developmental gene toolkit and associated pathways in a potential new model crustacean using transcriptomic analysis. Development genes and evolution 226, 325–337, https://doi.org/10.1007/s00427-016-0551-6 (2016).
doi: 10.1007/s00427-016-0551-6 pubmed: 27278761
Newman, S. A. & Bhat, R. Dynamical patterning modules: a “pattern language” for development and evolution of multicellular form. The International journal of developmental biology 53, 693–705, https://doi.org/10.1387/ijdb.072481sn (2009).
doi: 10.1387/ijdb.072481sn pubmed: 19378259
Engler, A. J., Humbert, P. O., Wehrle-Haller, B. & Weaver, V. M. Multiscale modeling of form and function. Science 324, 208–212, https://doi.org/10.1126/science.1170107 (2009).
doi: 10.1126/science.1170107 pubmed: 19359578 pmcid: 4527531
Uversky, V. N. & Dunker, A. K. Understanding protein non-folding. Biochimica et biophysica acta 1804, 1231–1264, https://doi.org/10.1016/j.bbapap.2010.01.017 (2010).
doi: 10.1016/j.bbapap.2010.01.017 pubmed: 20117254 pmcid: 2882790
Uversky, V. N. & Dunker, A. K. Biochemistry. Controlled chaos. Science 322, 1340–1341, https://doi.org/10.1126/science.1167453 (2008).
doi: 10.1126/science.1167453 pubmed: 19039128
Romero, P., Obradovic, Z. & Dunker, A. K. Natively disordered proteins: functions and predictions. Applied bioinformatics 3, 105–113 (2004).
doi: 10.2165/00822942-200403020-00005
Fuxreiter, M. Fuzziness: linking regulation to protein dynamics. Molecular bioSystems 8, 168–177, https://doi.org/10.1039/c1mb05234a (2012).
doi: 10.1039/c1mb05234a pubmed: 21927770
Mohan, A. et al. Analysis of molecular recognition features (MoRFs). Journal of molecular biology 362, 1043–1059, https://doi.org/10.1016/j.jmb.2006.07.087 (2006).
doi: 10.1016/j.jmb.2006.07.087 pubmed: 16935303
Cortese, M. S., Uversky, V. N. & Dunker, A. K. Intrinsic disorder in scaffold proteins: getting more from less. Progress in biophysics and molecular biology 98, 85–106, https://doi.org/10.1016/j.pbiomolbio.2008.05.007 (2008).
doi: 10.1016/j.pbiomolbio.2008.05.007 pubmed: 18619997 pmcid: 2671330
Dunker, A. K. & Uversky, V. N. Signal transduction via unstructured protein conduits. Nature chemical biology 4, 229–230, https://doi.org/10.1038/nchembio0408-229 (2008).
doi: 10.1038/nchembio0408-229 pubmed: 18347590
Liu, J. et al. Intrinsic disorder in transcription factors. Biochemistry 45, 6873–6888, https://doi.org/10.1021/bi0602718 (2006).
doi: 10.1021/bi0602718 pubmed: 16734424 pmcid: 2538555
Niklas, K. J., Bondos, S. E., Dunker, A. K. & Newman, S. A. Rethinking gene regulatory networks in light of alternative splicing, intrinsically disordered protein domains, and post-translational modifications. Frontiers in cell and developmental biology 3, 8, https://doi.org/10.3389/fcell.2015.00008 (2015).
doi: 10.3389/fcell.2015.00008 pubmed: 25767796 pmcid: 4341551
Peysselon, F., Xue, B., Uversky, V. N. & Ricard-Blum, S. Intrinsic disorder of the extracellular matrix. Molecular bioSystems 7, 3353–3365, https://doi.org/10.1039/c1mb05316g (2011).
doi: 10.1039/c1mb05316g pubmed: 22009114
Iakoucheva, L. M. et al. The importance of intrinsic disorder for protein phosphorylation. Nucleic acids research 32, 1037–1049, https://doi.org/10.1093/nar/gkh253 (2004).
doi: 10.1093/nar/gkh253 pubmed: 14960716 pmcid: 373391
Marchini, F. K. et al. Profiling the Trypanosoma cruzi phosphoproteome. PloS one 6, e25381, https://doi.org/10.1371/journal.pone.0025381 (2011).
doi: 10.1371/journal.pone.0025381 pubmed: 21966514 pmcid: 3178638
Amoutzias, G. D., He, Y., Lilley, K. S., Van de Peer, Y. & Oliver, S. G. Evaluation and properties of the budding yeast phosphoproteome. Molecular & cellular proteomics: MCP 11, M111 009555, https://doi.org/10.1074/mcp.M111.009555 (2012).
doi: 10.1074/mcp.M111.009555
Singh, G. P. Association between intrinsic disorder and serine/threonine phosphorylation in Mycobacterium tuberculosis. PeerJ 3, e724, https://doi.org/10.7717/peerj.724 (2015).
doi: 10.7717/peerj.724 pubmed: 25648268 pmcid: 4304846
Gsponer, J., Futschik, M. E., Teichmann, S. A. & Babu, M. M. Tight regulation of unstructured proteins: from transcript synthesis to protein degradation. Science 322, 1365–1368, https://doi.org/10.1126/science.1163581 (2008).
doi: 10.1126/science.1163581 pubmed: 19039133 pmcid: 2803065
Nishi, H., Hashimoto, K. & Panchenko, A. R. Phosphorylation in protein-protein binding: effect on stability and function. Structure 19, 1807–1815, https://doi.org/10.1016/j.str.2011.09.021 (2011).
doi: 10.1016/j.str.2011.09.021 pubmed: 22153503 pmcid: 3240861
Nishikawa, I. et al. Computational prediction of O-linked glycosylation sites that preferentially map on intrinsically disordered regions of extracellular proteins. Int. J. Mol. Sci. 11, 4991–5008, https://doi.org/10.3390/ijms11124991 (2010).
doi: 10.3390/ijms11124991 pubmed: 21614187 pmcid: 3100847
Prates, E. T. et al. The impact of O-glycan chemistry on the stability of intrinsically disordered proteins. Chemical science 9, 3710–3715, https://doi.org/10.1039/c7sc05016j (2018).
doi: 10.1039/c7sc05016j pubmed: 29780502 pmcid: 5939190
Helenius, A. & Aebi, M. Intracellular functions of N-linked glycans. Science 291, 2364–2369 (2001).
doi: 10.1126/science.291.5512.2364
Ferris, S. P., Kodali, V. K. & Kaufman, R. J. Glycoprotein folding and quality-control mechanisms in protein-folding diseases. Disease models & mechanisms 7, 331–341, https://doi.org/10.1242/dmm.014589 (2014).
doi: 10.1242/dmm.014589
Tams, J. W. & Welinder, K. G. Glycosylation and thermodynamic versus kinetic stability of horseradish peroxidase. FEBS letters 421, 234–236 (1998).
doi: 10.1016/S0014-5793(97)01573-1
Shental-Bechor, D. & Levy, Y. Effect of glycosylation on protein folding: a close look at thermodynamic stabilization. Proc. Natl Acad. Sc.i USA 105, 8256–8261, https://doi.org/10.1073/pnas.0801340105 (2008).
doi: 10.1073/pnas.0801340105
Kozlowski, L. P. & Bujnicki, J. M. MetaDisorder: a meta-server for the prediction of intrinsic disorder in proteins. BMC bioinformatics 13, 111, https://doi.org/10.1186/1471-2105-13-111 (2012).
doi: 10.1186/1471-2105-13-111 pubmed: 22624656 pmcid: 3465245
Gasteiger, E. et al. ExPASy: The proteomics server for in-depth protein knowledge and analysis. Nucleic acids research 31, 3784–3788 (2003).
doi: 10.1093/nar/gkg563
Sickmeier, M. et al. DisProt: the Database of Disordered Proteins. Nucleic acids research 35, D786–793, https://doi.org/10.1093/nar/gkl893 (2007).
doi: 10.1093/nar/gkl893 pubmed: 17145717
Piovesan, D. et al. DisProt 7.0: a major update of the database of disordered proteins. Nucleic acids research 45, D1123–D1124, https://doi.org/10.1093/nar/gkw1279 (2017).
doi: 10.1093/nar/gkw1279 pubmed: 27965415
McCarthy, F. M. et al. AgBase: a unified resource for functional analysis in agriculture. Nucleic acids research 35, D599–603, https://doi.org/10.1093/nar/gkl936 (2007).
doi: 10.1093/nar/gkl936 pubmed: 17135208
Tamura, K. & Nei, M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular biology and evolution 10, 512–526, https://doi.org/10.1093/oxfordjournals.molbev.a040023 (1993).
doi: 10.1093/oxfordjournals.molbev.a040023 pubmed: 8336541
Vacic, V., Uversky, V. N., Dunker, A. K. & Lonardi, S. Composition Profiler: a tool for discovery and visualization of amino acid composition differences. BMC bioinformatics 8, 211, https://doi.org/10.1186/1471-2105-8-211 (2007).
doi: 10.1186/1471-2105-8-211 pubmed: 17578581 pmcid: 1914087
Lichtarge, O., Bourne, H. R. & Cohen, F. E. An evolutionary trace method defines binding surfaces common to protein families. Journal of molecular biology 257, 342–358, https://doi.org/10.1006/jmbi.1996.0167 (1996).
doi: 10.1006/jmbi.1996.0167 pubmed: 8609628
Lua, R. C. et al. UET: a database of evolutionarily-predicted functional determinants of protein sequences that cluster as functional sites in protein structures. Nucleic acids research 44, D308–312, https://doi.org/10.1093/nar/gkv1279 (2016).
doi: 10.1093/nar/gkv1279 pubmed: 26590254
Mellquist, J. L., Kasturi, L., Spitalnik, S. L. & Shakin-Eshleman, S. H. The amino acid following an asn-X-Ser/Thr sequon is an important determinant of N-linked core glycosylation efficiency. Biochemistry 37, 6833–6837, https://doi.org/10.1021/bi972217k (1998).
doi: 10.1021/bi972217k pubmed: 9578569
Uversky, V. N., Gillespie, J. R. & Fink, A. L. Why are “natively unfolded” proteins unstructured under physiologic conditions? Proteins 41, 415–427 (2000).
doi: 10.1002/1097-0134(20001115)41:3<415::AID-PROT130>3.0.CO;2-7
Shakin-Eshleman, S. H., Spitalnik, S. L. & Kasturi, L. The amino acid at the X position of an Asn-X-Ser sequon is an important determinant of N-linked core-glycosylation efficiency. The Journal of biological chemistry 271, 6363–6366, https://doi.org/10.1074/jbc.271.11.6363 (1996).
doi: 10.1074/jbc.271.11.6363 pubmed: 8626433
Petrescu, A. J., Milac, A. L., Petrescu, S. M., Dwek, R. A. & Wormald, M. R. Statistical analysis of the protein environment of N-glycosylation sites: implications for occupancy, structure, and folding. Glycobiology 14, 103–114, https://doi.org/10.1093/glycob/cwh008 (2004).
doi: 10.1093/glycob/cwh008 pubmed: 14514716
Zimmerman, J. M., Eliezer, N. & Simha, R. The characterization of amino acid sequences in proteins by statistical methods. Journal of theoretical biology 21, 170–201 (1968).
doi: 10.1016/0022-5193(68)90069-6
Eisenberg, D., Schwarz, E., Komaromy, M. & Wall, R. Analysis of membrane and surface protein sequences with the hydrophobic moment plot. Journal of molecular biology 179, 125–142, https://doi.org/10.1016/0022-2836(84)90309-7 (1984).
doi: 10.1016/0022-2836(84)90309-7 pubmed: 6502707
Vihinen, M., Torkkila, E. & Riikonen, P. Accuracy of protein flexibility predictions. Proteins 19, 141–149, https://doi.org/10.1002/prot.340190207 (1994).
doi: 10.1002/prot.340190207 pubmed: 8090708
Janin, J. Surface and inside volumes in globular proteins. Nature 277, 491–492 (1979).
doi: 10.1038/277491a0
Nagano, K. Logical analysis of the mechanism of protein folding. I. Predictions of helices, loops and beta-structures from primary structure. Journal of molecular biology 75, 401–420 (1973).
doi: 10.1016/0022-2836(73)90030-2
Dunker, A. K. et al. Intrinsically disordered protein. Journal of molecular graphics & modelling 19, 26–59 (2001).
doi: 10.1016/S1093-3263(00)00138-8
Pritisanac, I., Vernon, R. M., Moses, A. M. & Forman Kay, J. D. Entropy and Information within Intrinsically Disordered Protein Regions. Entropy 21, 662, https://doi.org/10.3390/e21070662 (2019).
doi: 10.3390/e21070662
Bywater, R. P. Prediction of protein structural features from sequence data based on Shannon entropy and Kolmogorov complexity. PloS one 10, e0119306, https://doi.org/10.1371/journal.pone.0119306 (2015).
doi: 10.1371/journal.pone.0119306 pubmed: 25856073 pmcid: 4391790
Oliveira, L., Paiva, P. B., Paiva, A. C. & Vriend, G. Identification of functionally conserved residues with the use of entropy-variability plots. Proteins 52, 544–552, https://doi.org/10.1002/prot.10490 (2003).
doi: 10.1002/prot.10490 pubmed: 12910454
Chen, J. W., Romero, P., Uversky, V. N. & Dunker, A. K. Conservation of intrinsic disorder in protein domains and families: I. A database of conserved predicted disordered regions. Journal of proteome research 5, 879–887, https://doi.org/10.1021/pr060048x (2006).
doi: 10.1021/pr060048x pubmed: 16602695 pmcid: 2543136
Lee, H. S., Qi, Y. & Im, W. Effects of N-glycosylation on protein conformation and dynamics: Protein Data Bank analysis and molecular dynamics simulation study. Scientific reports 5, 8926, https://doi.org/10.1038/srep08926 (2015).
doi: 10.1038/srep08926 pubmed: 25748215 pmcid: 4352867
Banks, D. D. The effect of glycosylation on the folding kinetics of erythropoietin. Journal of molecular biology 412, 536–550, https://doi.org/10.1016/j.jmb.2011.07.061 (2011).
doi: 10.1016/j.jmb.2011.07.061 pubmed: 21839094
Gavrilov, Y., Shental-Bechor, D., Greenblatt, H. M. & Levy, Y. Glycosylation May Reduce Protein Thermodynamic Stability by Inducing a Conformational Distortion. The journal of physical chemistry letters 6, 3572–3577, https://doi.org/10.1021/acs.jpclett.5b01588 (2015).
doi: 10.1021/acs.jpclett.5b01588 pubmed: 26722726
Shental-Bechor, D. & Levy, Y. Communication: folding of glycosylated proteins under confinement. J. Chem. Phys. 135, 141104, https://doi.org/10.1063/1.3650700 (2011).
doi: 10.1063/1.3650700 pubmed: 22010687
Hanson, S. R. et al. The core trisaccharide of an N-linked glycoprotein intrinsically accelerates folding and enhances stability. Proc. Natl Acad. Sci. USA 106, 3131–3136, https://doi.org/10.1073/pnas.0810318105 (2009).
doi: 10.1073/pnas.0810318105 pubmed: 19204290
Xu, C. & Ng, D. T. Glycosylation-directed quality control of protein folding. Nature reviews. Molecular cell biology 16, 742–752, https://doi.org/10.1038/nrm4073 (2015).
doi: 10.1038/nrm4073 pubmed: 26465718
Sifers, R. N. Insights into checkpoint capacity. Nature structural & molecular biology 11, 108–109, https://doi.org/10.1038/nsmb0204-108 (2004).
doi: 10.1038/nsmb0204-108
Chuang, G. Y. et al. Computational prediction of N-linked glycosylation incorporating structural properties and patterns. Bioinformatics 28, 2249–2255, https://doi.org/10.1093/bioinformatics/bts426 (2012).
doi: 10.1093/bioinformatics/bts426 pubmed: 22782545 pmcid: 3426846

Auteurs

Shyamili Goutham (S)

Department of Molecular Reproduction, Development and Genetics, Indian Institute of Sciences, Bangalore, 560012, India.

Indu Kumari (I)

School of Earth and Environmental Sciences, Central University of Himachal Pradesh, District-Kangra, Shahpur, Himachal Pradesh, 176206, India.

Dharma Pally (D)

Department of Molecular Reproduction, Development and Genetics, Indian Institute of Sciences, Bangalore, 560012, India.

Alvina Singh (A)

Department of Molecular Reproduction, Development and Genetics, Indian Institute of Sciences, Bangalore, 560012, India.

Sujasha Ghosh (S)

Department of Molecular Reproduction, Development and Genetics, Indian Institute of Sciences, Bangalore, 560012, India.

Yusuf Akhter (Y)

Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226025, India.

Ramray Bhat (R)

Department of Molecular Reproduction, Development and Genetics, Indian Institute of Sciences, Bangalore, 560012, India. ramray@iisc.ac.in.

Articles similaires

Genome, Chloroplast Phylogeny Genetic Markers Base Composition High-Throughput Nucleotide Sequencing

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C

Classifications MeSH