An intestinal zinc sensor regulates food intake and developmental growth.
Animals
Chloride Channels
/ metabolism
Drosophila Proteins
/ metabolism
Drosophila melanogaster
/ genetics
Eating
/ physiology
Enterocytes
/ metabolism
Female
Food Preferences
Homeostasis
Insect Vectors
Insulin
/ metabolism
Intestines
/ physiology
Ion Channel Gating
Larva
/ genetics
Lysosomes
/ metabolism
Male
Oocytes
/ metabolism
Receptor Protein-Tyrosine Kinases
/ metabolism
Signal Transduction
Xenopus
Zinc
/ metabolism
Journal
Nature
ISSN: 1476-4687
Titre abrégé: Nature
Pays: England
ID NLM: 0410462
Informations de publication
Date de publication:
04 2020
04 2020
Historique:
received:
17
05
2019
accepted:
18
02
2020
entrez:
10
4
2020
pubmed:
10
4
2020
medline:
4
6
2020
Statut:
ppublish
Résumé
In cells, organs and whole organisms, nutrient sensing is key to maintaining homeostasis and adapting to a fluctuating environment
Identifiants
pubmed: 32269334
doi: 10.1038/s41586-020-2111-5
pii: 10.1038/s41586-020-2111-5
pmc: PMC8833092
mid: NIHMS1772129
doi:
Substances chimiques
Chloride Channels
0
Drosophila Proteins
0
Insulin
0
Receptor Protein-Tyrosine Kinases
EC 2.7.10.1
tor protein, Drosophila
EC 2.7.10.1
Zinc
J41CSQ7QDS
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
263-268Subventions
Organisme : Medical Research Council
ID : MC_PC_16046
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_UP_1102/3
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_UP_1102/7
Pays : United Kingdom
Organisme : NIDDK NIH HHS
ID : R00 DK115879
Pays : United States
Commentaires et corrections
Type : CommentIn
Références
Miguel-Aliaga, I. Nerveless and gutsy: intestinal nutrient sensing from invertebrates to humans. Semin. Cell Dev. Biol. 23, 614–620 (2012).
pubmed: 22248674
pmcid: 3712190
Feingold, D., Starc, T., O’Donnell, M. J., Nilson, L. & Dent, J. A. The orphan pentameric ligand-gated ion channel pHCl-2 is gated by pH and regulates fluid secretion in Drosophila Malpighian tubules. J. Exp. Biol. 219, 2629–2638 (2016).
pubmed: 27358471
Remnant, E. J. et al. Evolution, expression, and function of nonneuronal ligand-gated chloride channels in Drosophila melanogaster. G3 (Bethesda) 6, 2003–2012 (2016).
Colombani, J. et al. A nutrient sensor mechanism controls Drosophila growth. Cell 114, 739–749 (2003).
pubmed: 14505573
Géminard, C., Rulifson, E. J. & Léopold, P. Remote control of insulin secretion by fat cells in Drosophila. Cell Metab. 10, 199–207 (2009).
pubmed: 19723496
Rodenfels, J. et al. Production of systemically circulating Hedgehog by the intestine couples nutrition to growth and development. Genes Dev. 28, 2636–2651 (2014).
pubmed: 25452274
pmcid: 4248294
Storelli, G. et al. Lactobacillus plantarum promotes Drosophila systemic growth by modulating hormonal signals through TOR-dependent nutrient sensing. Cell Metab. 14, 403–414 (2011).
pubmed: 21907145
Waterhouse, D. F. & Stay, B. Functional differentiation in the midgut epithelium of blowfly larvae as revealed by histochemical tests. Aust. J. Biol. Sci. 8, 253–277 (1955).
Poulson, D. F. & Waterhouse, D. F. Experimental studies on pole cells and midgut differentiation in Diptera. Aust. J. Biol. Sci. 13, 541–567 (1960).
Dubreuil, R. R. et al. Mutations of α spectrin and labial block cuprophilic cell differentiation and acid secretion in the middle midgut of Drosophila larvae. Dev. Biol. 194, 1–11 (1998).
pubmed: 9473327
Li, H., Qi, Y. & Jasper, H. Preventing age-related decline of gut compartmentalization limits microbiota dysbiosis and extends lifespan. Cell Host Microbe 19, 240–253 (2016).
pubmed: 26867182
pmcid: 5106289
Overend, G. et al. Molecular mechanism and functional significance of acid generation in the Drosophila midgut. Sci. Rep. 6, 27242 (2016).
pubmed: 27250760
pmcid: 4890030
Storelli, G. et al. Drosophila perpetuates nutritional mutualism by promoting the fitness of its intestinal symbiont Lactobacillus plantarum. Cell Metab. 27, 362–377.e8 (2018).
pubmed: 29290388
pmcid: 5807057
Filshie, B. K., Poulson, D. F. & Waterhouse, D. F. Ultrastructure of the copper-accumulating region of the Drosophila larval midgut. Tissue Cell 3, 77–102 (1971).
pubmed: 18631544
Rulifson, E. J., Kim, S. K. & Nusse, R. Ablation of insulin-producing neurons in flies: growth and diabetic phenotypes. Science 296, 1118–1120 (2002).
pubmed: 12004130
Dent, J. A. Evidence for a diverse Cys-loop ligand-gated ion channel superfamily in early bilateria. J. Mol. Evol. 62, 523–535 (2006).
pubmed: 16586016
Negi, S., Pandey, S., Srinivasan, S. M., Mohammed, A. & Guda, C. LocSigDB: a database of protein localization signals. Database (Oxford) 2015, bav003 (2015).
Sancak, Y. et al. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 141, 290–303 (2010).
pubmed: 20381137
pmcid: 3024592
Şentürk, M. et al. Ubiquilins regulate autophagic flux through mTOR signalling and lysosomal acidification. Nat. Cell Biol. 21, 384–396 (2019).
pubmed: 30804504
pmcid: 6534127
Zoncu, R. et al. mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H
pubmed: 22053050
pmcid: 3211112
Valvezan, A. J. & Manning, B. D. Molecular logic of mTORC1 signalling as a metabolic rheostat. Nat. Metab. 1, 321–333 (2019).
Mauvezin, C. & Neufeld, T. P. Bafilomycin A1 disrupts autophagic flux by inhibiting both V-ATPase-dependent acidification and Ca-P60A/SERCA-dependent autophagosome-lysosome fusion. Autophagy 11, 1437–1438 (2015).
pubmed: 26156798
pmcid: 4590655
Hudry, B. et al. Sex differences in intestinal carbohydrate metabolism promote food intake and sperm maturation. Cell 178, 901–918.e16 (2019).
pubmed: 31398343
pmcid: 6700282
González, A. & Hall, M. N. Nutrient sensing and TOR signaling in yeast and mammals. EMBO J. 36, 397–408 (2017).
pubmed: 28096180
pmcid: 5694944
Saxton, R. A. & Sabatini, D. M. mTOR signaling in growth, metabolism, and disease. Cell 168, 960–976 (2017).
pubmed: 5394987
pmcid: 5394987
Blaby-Haas, C. E. & Merchant, S. S. Lysosome-related organelles as mediators of metal homeostasis. J. Biol. Chem. 289, 28129–28136 (2014).
pubmed: 25160625
pmcid: 4192468
Roh, H. C., Collier, S., Guthrie, J., Robertson, J. D. & Kornfeld, K. Lysosome-related organelles in intestinal cells are a zinc storage site in C. elegans. Cell Metab. 15, 88–99 (2012).
pubmed: 22225878
Holly, M. K. & Smith, J. G. Paneth cells during viral infection and pathogenesis. Viruses 10, 225 (2018).
pmcid: 5977218
Park, J. et al. Lysosome-rich enterocytes mediate protein absorption in the vertebrate gut. Dev. Cell 51, 7–20.e6 (2019).
pubmed: 31474562
Baker, D. A. et al. A comprehensive gene expression atlas of sex- and tissue-specificity in the malaria vector, Anopheles gambiae. BMC Genomics 12, 296 (2011).
pubmed: 21649883
pmcid: 3129592
Sudarsan, V., Pasalodos-Sanchez, S., Wan, S., Gampel, A. & Skaer, H. A genetic hierarchy establishes mitogenic signalling and mitotic competence in the renal tubules of Drosophila. Development 129, 935–944 (2002).
pubmed: 11861476
Phillips, M. D. & Thomas, G. H. Brush border spectrin is required for early endosome recycling in Drosophila. J. Cell Sci. 119, 1361–1370 (2006).
pubmed: 16537648
Kim, E., Goraksha-Hicks, P., Li, L., Neufeld, T. P. & Guan, K. L. Regulation of TORC1 by Rag GTPases in nutrient response. Nat. Cell Biol. 10, 935–945 (2008).
pubmed: 18604198
pmcid: 2711503
Romero-Pozuelo, J., Demetriades, C., Schroeder, P. & Teleman, A. A. CycD/Cdk4 and discontinuities in Dpp signaling activate TORC1 in the Drosophila wing disc. Dev. Cell 42, 376–387.e5 (2017).
pubmed: 28829945
Pircs, K. et al. Advantages and limitations of different p62-based assays for estimating autophagic activity in Drosophila. PLoS ONE 7, e44214 (2012).
pubmed: 22952930
pmcid: 3432079
Hegedűs, K. et al. The Ccz1-Mon1-Rab7 module and Rab5 control distinct steps of autophagy. Mol. Biol. Cell 27, 3132–3142 (2016).
pubmed: 27559127
pmcid: 5063620
Marois, E., Mahmoud, A. & Eaton, S. The endocytic pathway and formation of the Wingless morphogen gradient. Development 133, 307–317 (2006).
pubmed: 16354714
Sun, Q. et al. Intracellular chloride and scaffold protein Mo25 cooperatively regulate transepithelial ion transport through WNK signaling in the Malpighian tubule. J. Am. Soc. Nephrol. 29, 1449–1461 (2018).
pubmed: 29602832
pmcid: 5967776
Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).
pubmed: 22743772
Layalle, S., Arquier, N. & Léopold, P. The TOR pathway couples nutrition and developmental timing in Drosophila. Dev. Cell 15, 568–577 (2008).
pubmed: 18854141
Bhatt, P. K. & Neckameyer, W. S. Functional analysis of the larval feeding circuit in Drosophila. J. Vis. Exp. 51062, e51062 (2013).
Shen, P. Analysis of feeding behavior of Drosophila larvae on solid food. Cold Spring Harb. Protoc. https://doi.org/10.1101/pdb.prot069328 (2012).
Almeida de Carvalho, M. J. & Mirth, C. K. Food intake and food choice are altered by the developmental transition at critical weight in Drosophila melanogaster. Anim. Behav. 126, 195–208 (2017).
Toshima, N. & Tanimura, T. Taste preference for amino acids is dependent on internal nutritional state in Drosophila melanogaster. J. Exp. Biol. 215, 2827–2832 (2012).
pubmed: 22837455
Preibisch, S., Saalfeld, S. & Tomancak, P. Globally optimal stitching of tiled 3D microscopic image acquisitions. Bioinformatics 25, 1463–1465 (2009).
pubmed: 19346324
pmcid: 2682522
Shin, S. C. et al. Drosophila microbiome modulates host developmental and metabolic homeostasis via insulin signaling. Science 334, 670–674 (2011).
pubmed: 22053049
Axelsson, L. et al. Genome sequence of the naturally plasmid-free Lactobacillus plantarum strain NC8 (CCUG 61730).J. Bacteriol. 194, 2391–2392 (2012).
pubmed: 22493200
pmcid: 3347089
Erkosar, B. et al. Drosophila microbiota modulates host metabolic gene expression via IMD/NF-κB signaling. PLoS ONE 9, e94729 (2014).
pubmed: 24733183
Rera, M. et al. Modulation of longevity and tissue homeostasis by the Drosophila PGC-1 homolog. Cell Metab. 14, 623–634 (2011).
pubmed: 22055505
pmcid: 3238792
Palanker Musselman, L et al. A high-sugar diet produces obesity and insulin resistance in wild-type Drosophila. Dis. Model. Mech. 4, 842–849 (2011).
Baena-Lopez, L. A., Alexandre, C., Mitchell, A., Pasakarnis, L. & Vincent, J. P. Accelerated homologous recombination and subsequent genome modification in Drosophila. Development 140, 4818–4825 (2013).
pubmed: 24154526
pmcid: 3833436
Bischof, J., Maeda, R. K., Hediger, M., Karch, F. & Basler, K. An optimized transgenesis system for Drosophila using germ-line-specific φC31 integrases. Proc. Natl Acad. Sci. USA 104, 3312–3317 (2007).
pubmed: 17360644
Lin, Y. F. et al. MIB: metal ion-binding site prediction and docking server. J. Chem. Inf. Model. 56, 2287–2291 (2016).
pubmed: 27976886
Maier, J. A. et al. ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theory Comput. 11, 3696–3713 (2015).
pubmed: 26574453
pmcid: 4821407
Miller, B. R., III et al. MMPBSA.py: an efficient program for end-state free energy calculations. J. Chem. Theory Comput. 8, 3314–3321 (2012).
pubmed: 26605738
Liman, E. R., Tytgat, J. & Hess, P. Subunit stoichiometry of a mammalian K
pubmed: 1419000
Misof, B. et al. Phylogenomics resolves the timing and pattern of insect evolution. Science 346, 763–767 (2014).
pubmed: 25378627
Hervas, S., Sanz, E., Casillas, S., Pool, J. E. & Barbadilla, A. PopFly: the Drosophila population genomics browser. Bioinformatics 33, 2779–2780 (2017).
pubmed: 28472360
pmcid: 5860067
Charif, D. & Lobry, J. R. in Structural Approaches to Sequence Evolution (eds Bastolla, U. et al.) 207–232 (Springer, 2007).
Li, W. H. Unbiased estimation of the rates of synonymous and nonsynonymous substitution. J. Mol. Evol. 36, 96–99 (1993).
pubmed: 8433381
Pfeifer, B., Wittelsbürger, U., Ramos-Onsins, S. E. & Lercher, M. J. PopGenome: an efficient Swiss army knife for population genomic analyses in R. Mol. Biol. Evol. 31, 1929–1936 (2014).
pubmed: 24739305
pmcid: 4069620
Wertheim, J. O., Murrell, B., Smith, M. D., Kosakovsky Pond, S. L. & Scheffler, K. RELAX: detecting relaxed selection in a phylogenetic framework. Mol. Biol. Evol. 32, 820–832 (2015).
pubmed: 25540451
Hammond, A. et al. A CRISPR–Cas9 gene drive system targeting female reproduction in the malaria mosquito vector Anopheles gambiae. Nat. Biotechnol. 34, 78–83 (2016).
pubmed: 26641531
Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).
pubmed: 3795411
pmcid: 3795411
Volohonsky, G. et al. Tools for Anopheles gambiae transgenesis. G3 (Bethesda) 5, 1151–1163 (2015).
Kriventseva, E. V. et al. OrthoDB v10: sampling the diversity of animal, plant, fungal, protist, bacterial and viral genomes for evolutionary and functional annotations of orthologs. Nucleic Acids Res. 47, D807–D811 (2019).
pubmed: 30395283
Robinson, J. T. et al. Integrative genomics viewer. Nat. Biotechnol. 29, 24–26 (2011).
pubmed: 3346182
pmcid: 3346182
Larkin, M. A. et al. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948 (2007).
Robert, X. & Gouet, P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 42, W320–W324 (2014).
pubmed: 24753421
pmcid: 4086106