Newborn screening of mucopolysaccharidoses: past, present, and future.


Journal

Journal of human genetics
ISSN: 1435-232X
Titre abrégé: J Hum Genet
Pays: England
ID NLM: 9808008

Informations de publication

Date de publication:
Jul 2020
Historique:
received: 02 01 2020
accepted: 03 03 2020
pubmed: 12 4 2020
medline: 28 1 2021
entrez: 12 4 2020
Statut: ppublish

Résumé

Mucopolysaccharidoses (MPS) are a subtype of lysosomal storage disorders (LSDs) characterized by the deficiency of the enzyme involved in the breakdown of glycosaminoglycans (GAGs). Mucopolysaccharidosis type I (MPS I, Hurler Syndrome) was endorsed by the U.S. Secretary of the Department of Health and Human Services for universal newborn screening (NBS) in February 2016. Its endorsement exemplifies the need to enhance the accuracy of diagnostic testing for disorders that are considered for NBS. The progression of MPS disorders typically incudes irreversible CNS involvement, severe bone dysplasia, and cardiac and respiratory issues. Patients with MPS have a significantly decreased quality of life if untreated and require timely diagnosis and management for optimal outcomes. NBS provides the opportunity to diagnose and initiate treatment plans for MPS patients as early as possible. Most newborns with MPS are asymptomatic at birth; therefore, it is crucial to have biomarkers that can be identified in the newborn. At present, there are tiered methods and different instrumentation available for this purpose. The screening of quick, cost-effective, sensitive, and specific biomarkers in patients with MPS at birth is important. Rapid newborn diagnosis enables treatments to maximize therapeutic efficacy and to introduce immune tolerance during the neonatal period. Currently, newborn screening for MPS I and II has been implemented and/or in pilot testing in several countries. In this review article, historical aspects of NBS for MPS and the prospect of newborn screening for MPS are described, including the potential tiers of screening.

Identifiants

pubmed: 32277174
doi: 10.1038/s10038-020-0744-8
pii: 10.1038/s10038-020-0744-8
doi:

Substances chimiques

Glycosaminoglycans 0

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

557-567

Subventions

Organisme : NIGMS NIH HHS
ID : P30 GM114736
Pays : United States
Organisme : NICHD NIH HHS
ID : R01 HD065767
Pays : United States

Références

Tomatsu S, Azario I, Sawamoto K, Pievani AS, Biondi A, Serafini M. Neonatal cellular and gene therapies for mucopolysaccharidoses: the earlier the better? J Inherit Metab Dis. 2016;39:189–202.
pubmed: 26578156 doi: 10.1007/s10545-015-9900-2
Furujo M, Kubo T, Kosuga M, Okuyama T. Enzyme replacement therapy attenuates disease progression in two Japanese siblings with mucopolysaccharidosis type VI. Mol Genet Metab. 2011;104:597–602.
pubmed: 21930407 doi: 10.1016/j.ymgme.2011.08.029
McGill JJ, Inwood AC, Coman DJ, Lipke ML, De Lore D, Swiedler SJ, et al. Enzyme replacement therapy for mucopolysaccharidosis VI from 8 weeks of age–a sibling control study. Clin Genet. 2010;77:492–8.
pubmed: 19968667 doi: 10.1111/j.1399-0004.2009.01324.x
Kubaski F, Yabe H, Suzuki Y, Seto T, Hamazaki T, Mason RW, et al. Hematopoietic stem cell transplantation for patients with mucopolysaccharidosis II. Biol Blood Marrow Transplant. 2017;23:1795–803.
pubmed: 28673849 pmcid: 5659208 doi: 10.1016/j.bbmt.2017.06.020
Patel P, Suzuki Y, Tanaka A, Yabe H, Kato S, Shimada T, et al. Impact of enzyme replacement therapy and hematopoietic stem cell therapy on growth in patients with Hunter syndrome. Mol Genet Metab Rep. 2014;1:184–96.
pubmed: 25061571 pmcid: 4104387 doi: 10.1016/j.ymgmr.2014.04.001
Yabe H, Tanaka A, Chinen Y, Kato S, Sawamoto K, Yasuda E, et al. Hematopoietic stem cell transplantation for Morquio A syndrome. Mol Genet Metab. 2016;117:84–94.
pubmed: 26452513 doi: 10.1016/j.ymgme.2015.09.011
Guthrie R, Susi A. A simple phenylalanine method for detecting phenylketonuria in large populations of newborn infants. Pediatrics. 1963;32:338–43.
pubmed: 14063511
Millington DS, Kodo N, Norwood DL, Roe CR. Tandem mass spectrometry: a new method for acylcarnitine profiling with potential for neonatal screening for inborn errors of metabolism. J Inherit Metab Dis. 1990;13:321–4.
pubmed: 2122093 doi: 10.1007/BF01799385
Watson MS, Mann MY, Lloyd-Puryear MA, Rinaldo P, Howell RR. Newborn screening: toward a uniform screening panel and system—executive summary. Pediatrics. 2006;117 (Suppl 3):S296–307.
doi: 10.1542/peds.2005-2633I
Recommended Uniform Screening Panel. Official web site of the U.S. Health Resources & Services Administration. 2019. https://www.hrsa.gov/advisory-committees/heritable-disorders/rusp/index.html .
Andermann A, Blancquaert I, Beauchamp S, Déry V. Revisiting Wilson and Jungner in the genomic age: a review of screening criteria over the past 40 years. Bull World Health Organ. 2008;86:317–9.
pubmed: 18438522 pmcid: 2647421 doi: 10.2471/BLT.07.050112
Wilson JM, Jungner G, World Health Organization. Principles and practice of screening for disease. 1968. https://apps.who.int/iris/bitstream/handle/10665/37650/WHO_PHP_34.pdf?sequence=17 .
Maxim LD, Niebo R, Utell MJ. Screening tests: a review with examples. Inhal Toxicol. 2014;26:811–28.
Gelb M. Newborn screening for lysosomal storage diseases: methodologies, screen positive rates, normalization of datasets, second-tier tests, and post-analysis tools. Int J Neonatal Screen. 2018;4:23.
IWATA S, SUKEGAWA K, KOKURYU M, TOMATSU S, KONDO N, Iwasa S, et al. Glycosaminoglycans in neonatal urine. Arch Dis Child Fetal Neonatal Ed. 2000;82:F77.
pmcid: 1721028 doi: 10.1136/fn.82.1.F77b
Tomatsu S, Fujii T, Fukushi M, Oguma T, Shimada T, Maeda M, et al. Newborn screening and diagnosis of mucopolysaccharidoses. Mol Genet Metab. 2013;110:42–53.
pubmed: 23860310 pmcid: 4047214 doi: 10.1016/j.ymgme.2013.06.007
Li Y, Brockmann K, Turecek F, Scott CR, Gelb MH. Tandem mass spectrometry for the direct assay of enzymes in dried blood spots: application to newborn screening for Krabbe disease. Clin Chem. 2004;50:638–40.
pubmed: 14981030 doi: 10.1373/clinchem.2003.028381
Iwata S, Sukegawa K, Sasaki T, Kokuryu M, Yamasita S, Noma A, et al. Mass screening test for mucopolysaccharidoses using the 1, 9-dimethylmethylene blue method: positive interference from paper diapers. Clin Chim Acta. 1997;264:245–50.
pubmed: 9293383 doi: 10.1016/S0009-8981(97)00084-3
Alonso‐Fernández JR, Fidalgo J, Colon C. Neonatal screening for mucopolysaccharidoses by determination of glycosaminoglycans in the eluate of urine‐impregnated paper: preliminary results of an improved DMB‐based procedure. J Clin Lab Anal. 2010;24:149–53.
pubmed: 20486194 pmcid: 6647676 doi: 10.1002/jcla.20375
De Jong JG, Wevers RA, Laarakkers C, Poorthuis BJ. Dimethylmethylene blue-based spectrophotometry of glycosaminoglycans in untreated urine: a rapid screening procedure for mucopolysaccharidoses. Clin Chem. 1989;35:1472–7.
pubmed: 2503262 doi: 10.1093/clinchem/35.7.1472
Whitley CB, Ridnour MD, Draper KA, Dutton CM, Neglia JP. Diagnostic test for mucopolysaccharidosis. I. Direct method for quantifying excessive urinary glycosaminoglycan excretion. Clin Chem. 1989;35:374–9.
pubmed: 2493341 doi: 10.1093/clinchem/35.3.374
Tomatsu S, Shimada T, Mason RW, Montaño AM, LaMarr WA, Kubaski F, et al. Establishment of glycosaminoglycan assays for mucopolysaccharidoses. Mol Genet Metab. 2015;2:S115.
Björnsson S. Quantitation of proteoglycans as glycosaminoglycans in biological fluids using an alcian blue dot blot analysis. Anal Biochem. 1998;256:229–37.
pubmed: 9473282 doi: 10.1006/abio.1997.2494
Tomatsu S, Shimada T, Montano AM, Mason RW. Newborn screening and diagnosis of mucopolysaccharidoses. Mol Genet Metab. 2014;2:S104–5.
De Jong JG, Hasselman JJ, van Landeghem AA, Vader HL, Wevers RA. The spot test is not a reliable screening procedure for mucopolysaccharidoses. Clin Chem. 1991;37:572–5.
pubmed: 1901775 doi: 10.1093/clinchem/37.4.572
Gelb MH, Turecek F, Scott CR, Chamoles NA. Direct multiplex assay of enzymes in dried blood spots by tandem mass spectrometry for the newborn screening of lysosomal storage disorders. J Inherit Metab Dis. 2006;29:397–404.
pubmed: 16763908 pmcid: 2488386 doi: 10.1007/s10545-006-0265-4
Chuang C, Liao H, Lin H, Chiang C, Lin S. Newborn screening of mucopolysaccharidoses: 29 assay, mucopolysaccharidoses update vol.1. New York: Nova Science Publishers; 2018. p. 647–60.
Tomatsu S, Kubaski F, Mason RW, Giugliani R, Yamaguchi S, Suzuki Y. Newborn screening for mucopolysaccharidoses by GAG assay with tandem mass spectrometry. Mol Genet Metab. 2018;123:S139.
Schielen P, Kemper E, Gelb M. Newborn screening for lysosomal storage diseases: a concise review of the literature on screening methods, therapeutic possibilities and regional programs. Int J Neonatal Screen. 2017;3:6.
pubmed: 28730181 pmcid: 5515486 doi: 10.3390/ijns3020006
Newborn Screening Status for All Disorders. NewSTEPs. 2019. https://www.newsteps.org/resources/newborn-screening-status-all-disorder .
Burton BK, Hoganson GE, Grange DK, Braddock SR, Christensen KM, Hitchins L, et al. Newborn screening for mucopolysaccharidosis type II (MPS II) in Illinois: the first year’s experience. Mol Genet Metab. 2019;126:S34.
doi: 10.1016/j.ymgme.2018.12.067
Bravo-Villalta HV, Neto EC, Schulte J, Pereira J, Sampaio-Filho C, Burin MG, et al. Investigation of newborns screened in a pilot program for four lysosomal diseases in Brazil. Mol Genet Metab. 2017;1:S31.
doi: 10.1016/j.ymgme.2016.11.051
Therrell BL, Padilla CD, Loeber JG, Kneisser I, Saadallah A, Borrajo GJ, et al. Current status of newborn screening worldwide: 2015. Semin Perinatol. 2015;39:171–87.
Chuang CK, Lin HY, Wang TJ, Huang YH, Chan MJ, Liao HC, et al. Status of newborn screening and follow up investigations for Mucopolysaccharidoses I and II in Taiwan. Orphanet J Rare Dis. 2018;13:84.
pubmed: 29801497 pmcid: 5970538 doi: 10.1186/s13023-018-0816-4
Burlina AB, Polo G, Salviati L, Duro G, Zizzo C, Dardis A, et al. Newborn screening for lysosomal storage disorders by tandem mass spectrometry in North East Italy. J Inherit Metab Dis. 2018;41:209–19.
pubmed: 29143201 doi: 10.1007/s10545-017-0098-3
Bhattacharya K, Wotton T, Wiley V. The evolution of blood-spot newborn screening. Transl Pediatr. 2014;3:63–70.
Chamoles NA, Blanco M, Gaggioli D. Fabry disease: enzymatic diagnosis in dried blood spots on filter paper. Clin Chim Acta. 2001;1:195–6.
doi: 10.1016/S0009-8981(01)00478-8
Chamoles NA, Blanco M, Gaggioli D, Casentini C. Tay-Sachs and Sandhoff diseases: enzymatic diagnosis in dried blood spots on filter paper: retrospective diagnoses in newborn-screening cards. Clin Chim Acta. 2002;318:133–7.
pubmed: 11880123 doi: 10.1016/S0009-8981(02)00002-5
Chamoles NA, Blanco M, Gaggioli D, Casentini C. Gaucher and Niemann–Pick diseases—enzymatic diagnosis in dried blood spots on filter paper: retrospective diagnoses in newborn-screening cards. Clin Chim Acta. 2002;317:191–7.
pubmed: 11814475 doi: 10.1016/S0009-8981(01)00798-7
Chamoles NA, Niizawa G, Blanco M, Gaggioli D, Casentini C. Glycogen storage disease type II: enzymatic screening in dried blood spots on filter paper. Clin Chim Acta. 2004;347:97–102.
pubmed: 15313146 doi: 10.1016/j.cccn.2004.04.009
Li Y, Scott CR, Chamoles NA, Ghavami A, Pinto BM, Turecek F, et al. Direct multiplex assay of lysosomal enzymes in dried blood spots for newborn screening. Clin Chem. 2004;50:1785–96.
pubmed: 15292070 pmcid: 3428798 doi: 10.1373/clinchem.2004.035907
Lin SP, Lin HY, Wang TJ, Chang CY, Lin CH, Huang SF, et al. A pilot newborn screening program for Mucopolysaccharidosis type I in Taiwan. Orphanet J Rare Dis. 2013;8:147.
pubmed: 24053568 pmcid: 3849552 doi: 10.1186/1750-1172-8-147
Sista RS, Wang T, Wu N, Graham C, Eckhardt A, Winger T, et al. Multiplex newborn screening for Pompe, Fabry, Hunter, Gaucher, and Hurler diseases using a digital microfluidic platform. Clin Chim Acta. 2013;424:12–8.
pubmed: 23660237 pmcid: 3926752 doi: 10.1016/j.cca.2013.05.001
Chan MJ, Liao HC, Gelb MH, Chuang CK, Liu MY, Chen HJ, et al. Taiwan National Newborn Screening Program by tandem mass spectrometry for mucopolysaccharidoses types I, II, and VI. J Pediatr. 2019;205:176–82.
pubmed: 30409495 doi: 10.1016/j.jpeds.2018.09.063
Pollard L, Wood T. Multiplex DBS enzyme assay for MPS II, IIIB, IVA, VI, VII and CLN2 via LC-MS/MS expands clinical utility of DBS enzyme testing. Mol Genet Metab. 2019;126:S119.
doi: 10.1016/j.ymgme.2018.12.303
Singh R, Chopra S, Graham C, Nelson L, Ng R, Nuffer M, et al. Demonstration of a digital microfluidic platform for the high throughput analysis of 12 discrete fluorimetric enzyme assays using a single newborn dried blood spot punch. Mol Genet Metab. 2018;123:S132.
doi: 10.1016/j.ymgme.2017.12.361
M. Beck, S. Braun, W. Coerdt, E. Merz, E.Young, AC. Sewell. Fetal presentation of Morquio disease type A. Prenat Diagn. 1992;12:1019–29.
Klug T, Bilyeu H. Validation and implementation of MPS II newborn screening in Missouri using a fluorimetric assay. Chicago, IL: APHL Newborn Screening and Genetic Testing Symposium; 2019.
Elliott S, Buroker N, Cournoyer JJ, Potier AM, Trometer JD, Elbin C, et al. Pilot study of newborn screening for six lysosomal storage diseases using tandem mass spectrometry. Mol Genet Metab. 2016;118:304–9.
pubmed: 27238910 pmcid: 5318163 doi: 10.1016/j.ymgme.2016.05.015
Burton BK, Charrow J, Hoganson GE, Waggoner D, Tinkle B, Braddock SR, et al. Newborn screening for lysosomal storage disorders in Illinois: the initial 15-month experience. J Pediatr. 2017;190:130–5.
pubmed: 28728811 doi: 10.1016/j.jpeds.2017.06.048
Kumar AB, Masi S, Ghomashchi F, Chennamaneni NK, Ito M, Scott CR, et al. Tandem mass spectrometry has a larger analytical range than fluorescence assays of lysosomal enzymes: application to newborn screening and diagnosis of mucopolysaccharidoses types II, IVA, and VI. Clin Chem. 2015;61:1363–71.
pubmed: 26369786 pmcid: 4737431 doi: 10.1373/clinchem.2015.242560
Li Y, Brockmann K, Turecek F, Scott CR, Gelb MH. Tandem mass spectrometry for the direct assay of enzymes in dried blood spots: application to newborn screening for Krabbe disease. Clin Chem. 2004;50:638–40.
pubmed: 14981030 doi: 10.1373/clinchem.2003.028381
Blanchard S, Sadilek M, Scott CR, Turecek F, Gelb MH. Tandem mass spectrometry for the direct assay of lysosomal enzymes in dried blood spots: application to screening newborns for mucopolysaccharidosis I. Clin Chem. 2008;54:2067–70.
pubmed: 19042989 pmcid: 2891177 doi: 10.1373/clinchem.2008.115410
Duffner PK, Caggana M, Orsini JJ, Wenger DA, Patterson MC, Crosley CJ, et al. Newborn screening for Krabbe disease: the New York State model. Pediatr Neurol. 2009;40:245–52.
pubmed: 19302934 doi: 10.1016/j.pediatrneurol.2008.11.010
Gelb MH, Scott CR, Turecek F. Newborn screening for lysosomal storage diseases. Clin Chem. 2015;61:335–46.
pubmed: 25477536 doi: 10.1373/clinchem.2014.225771
Duffey TA, Sadilek M, Scott CR, Turecek F, Gelb MH. Tandem mass spectrometry for the direct assay of lysosomal enzymes in dried blood spots: application to screening newborns for mucopolysaccharidosis VI (Maroteaux-Lamy syndrome). Anal Chem. 2010;82:9587–91.
pubmed: 20961069 pmcid: 2980560 doi: 10.1021/ac102090v
Duffey TA, Bellamy G, Elliott S, Fox AC, Glass M, Turecek F, et al. A tandem mass spectrometry triplex assay for the detection of Fabry, Pompe, and mucopolysaccharidosis-I (Hurler). Clin Chem. 2010;56:1854–61.
pubmed: 20940330 pmcid: 3442157 doi: 10.1373/clinchem.2010.152009
Khaliq T, Sadilek M, Scott CR, Turecek F, Gelb MH. Tandem mass spectrometry for the direct assay of lysosomal enzymes in dried blood spots: application to screening newborns for mucopolysaccharidosis IVA. Clin Chem. 2011;57:128–31.
pubmed: 21030685 doi: 10.1373/clinchem.2010.149880
Gerber SA, Scott CR, Tureček F, Gelb MH. Direct profiling of multiple enzyme activities in human cell lysates by affinity chromatography/electrospray ionization mass spectrometry: application to clinical enzymology. Anal Chem. 2001;73:1651–7.
pubmed: 11338575 doi: 10.1021/ac0100650
Metz TF, Mechtler TP, Orsini JJ, Martin M, Shushan B, Herman JL, et al. Simplified newborn screening protocol for lysosomal storage disorders. Clin Chem. 2011;57:1286–94.
pubmed: 21771947 doi: 10.1373/clinchem.2011.164640
Langan TJ, Orsini JJ, Jalal K, Barczykowski AL, Escolar ML, Poe MD, et al. Development of a newborn screening tool based on bivariate normal limits: using psychosine and galactocerebrosidase determination on dried blood spots to predict Krabbe disease. Genet Med. 2018;14:1.
F. Kubaski, H. Osago, R. Mason, S. Yamaguchi, H. Kobayashi, M. Tsuchiya, et al. Newborn screening and biomarkers for Mucopolysaccharidoses by GAG assay, Mucopolysaccharidoses update vol.1. New York: Nova Science Publishers. 2018. p. 661–84.
Kubaski F, Mason RW, Nakatomi A, Shintaku H, Xie L, van Vlies N, et al. Newborn screening for mucopolysaccharidoses: a pilot study of measurement of glycosaminoglycans by tandem mass spectrometry. J Inherit Metab Dis. 2017;40:151–8.
pubmed: 27718145 doi: 10.1007/s10545-016-9981-6
Shimada T, Kelly J, LaMarr WA, van Vlies N, Yasuda E, Mason RW, et al. Novel heparan sulfate assay by using automated high-throughput mass spectrometry: application to monitoring and screening for mucopolysaccharidoses. Mol Genet Metab. 2014;113:92–9.
Ohashi A, Montaño AM, Colón JE, Oguma T, Luisiri A, Tomatsu S. Sacral dimple: incidental findings from newborn evaluation (Case Presentation). Acta Paediatr. 2009;98:768–9.
Martin JJ, Ceuterick C. Prenatal pathology in mucopolysaccharidoses: a comparison with postnatal cases. Clin Neuropathol. 1983;2:122–7
Kubaski F, Brusius‐Facchin AC, Mason RW, Patel P, Burin MG, Michelin‐Tirelli K, et al. Elevation of glycosaminoglycans in the amniotic fluid of a fetus with mucopolysaccharidosis VII. Prenat Diagn. 2017;37:435–9.
de Ruijter J, de Ru MH, Wagemans T, IJlst L, Lund AM, Orchard PJ, et al. Heparan sulfate and dermatan sulfate derived disaccharides are sensitive markers for newborn screening for mucopolysaccharidoses types I, II and III. Mol Genet Metab. 2012;107:705–10.
pubmed: 23084433 doi: 10.1016/j.ymgme.2012.09.024
Whitley CB, Ridnour MD, Draper KA, Dutton CM, Neglia JP. Diagnostic test for mucopolysaccharidosis. I. Direct method for quantifying excessive urinary glycosaminoglycan excretion. Clin Chem. 1989;35:374–9.
pubmed: 2493341 doi: 10.1093/clinchem/35.3.374
Kubaski F, Mason RW, Nakatomi A, Shintaku H, Xie L, van Vlies NN, et al. Newborn screening for mucopolysaccharidoses: a pilot study of measurement of glycosaminoglycans by tandem mass spectrometry. J Inherit Metab Dis. 2017;40:151–8.
pubmed: 27718145 doi: 10.1007/s10545-016-9981-6
Matern D, Gavrilov D, Oglesbee D, Raymond K, Rinaldo P, Tortorelli S. Newborn screening for lysosomal storage disorders. In: Seminars in perinatology. WB Saunders; 2015;39:206–16.
Stapleton M, Kubaski F, Mason RW, Shintaku H, Kobayashi H, Yamaguchi S, et al. Newborn screening for mucopolysaccharidoses: Measurement of glycosaminoglycans by LC-MS/MS. Molecular Genetics and Metabolism Reports. 2020;22:100563.
pubmed: 31956510 pmcid: 6957835 doi: 10.1016/j.ymgmr.2019.100563
Wasserstein MP, Caggana M, Bailey SM, Desnick RJ, Edelmann L, Estrella L, et al. The New York pilot newborn screening program for lysosomal storage diseases: report of the first 65,000 infants. Genet Med. 2019;21:631.
pubmed: 30093709 doi: 10.1038/s41436-018-0129-y
Hopkins PV, Campbell C, Klug T, Rogers S, Raburn-Miller J, Kiesling J. Lysosomal storage disorder screening implementation: findings from the first six months of full population pilot testing in Missouri. J Pediatr. 2015;166:172–7.
pubmed: 25444528 doi: 10.1016/j.jpeds.2014.09.023
Hopkins PV, Klug T, Vermette L, Raburn-Miller J, Kiesling J, Rogers S. Incidence of 4 lysosomal storage disorders from 4 years of newborn screening. JAMA Pediatr. 2018;172:696–7.
pubmed: 29813145 pmcid: 6137509 doi: 10.1001/jamapediatrics.2018.0263
Guthrie R, Susi A. A simple phenylalanine method for detecting phenylketonuria in large populations of newborn infants. Pediatrics. 1963;32:338–43.
pubmed: 14063511

Auteurs

Nivethitha Arunkumar (N)

Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA.
Department of Health Sciences, University of Delaware, Newark, DE, USA.

Thomas J Langan (TJ)

Departments of Neurology Pediatrics, and Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY, USA.

Molly Stapleton (M)

Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA.
Department of Biological Sciences, University of Delaware, Newark, DE, USA.

Francyne Kubaski (F)

Medical Genetics Service, HCPA, Porto Alegre, Brazil.
Department of Genetics and Molecular Biology-PPGBM, UFRGS, Porto Alegre, Brazil.
INAGEMP, Porto Alegre, Brazil.

Robert W Mason (RW)

Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA.
Department of Biological Sciences, University of Delaware, Newark, DE, USA.

Rajendra Singh (R)

Baebies, 615 Davis Drive, Durham, NC, USA.

Hironori Kobayashi (H)

Department of Pediatrics, Shimane University Faculty of Medicine, Shimane, Japan.

Seiji Yamaguchi (S)

Department of Pediatrics, Shimane University Faculty of Medicine, Shimane, Japan.

Yasuyuki Suzuki (Y)

Medical Education Development Center, Gifu University, Gifu, Japan.

Kenji Orii (K)

Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan.

Tadao Orii (T)

Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan.

Toshiyuki Fukao (T)

Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan.

Shunji Tomatsu (S)

Nemours/Alfred I. duPont Hospital for Children, Wilmington, DE, USA. stomatsu@nemours.org.
Department of Biological Sciences, University of Delaware, Newark, DE, USA. stomatsu@nemours.org.
Department of Pediatrics, Shimane University Faculty of Medicine, Shimane, Japan. stomatsu@nemours.org.
Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu, Japan. stomatsu@nemours.org.
Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA, USA. stomatsu@nemours.org.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH