Targeted double domain nanoplex based on galactosylated polyethylenimine enhanced the delivery of IL-12 plasmid.
asialoglycoprotein receptor
gene delivery
interleukin-12
nanoparticle
polyethylenimine
Journal
Biotechnology progress
ISSN: 1520-6033
Titre abrégé: Biotechnol Prog
Pays: United States
ID NLM: 8506292
Informations de publication
Date de publication:
09 2020
09 2020
Historique:
received:
30
01
2020
revised:
08
03
2020
accepted:
08
04
2020
pubmed:
14
4
2020
medline:
29
9
2021
entrez:
14
4
2020
Statut:
ppublish
Résumé
The objective of the present investigation was to design a targeted polyethylenimine (PEI)-based polyplex by conjugating lactose bearing galactose groups on low molecular weight PEI (LMW PEI) grafted to a high molecular weight PEI (HMW PEI) via a succinic acid linker in order to restore the amine content of the whole conjugate used for ligand conjugation. The PEI conjugate was synthesized and characterized in terms of buffering capacity, particle size, zeta potential, plasmid condensation ability, and protection of DNA against degrading enzymes. Also, the transfection efficiency and cytotoxicity were evaluated in the cell line over-expressing asialoglycoprotein receptors (ASGPRs) and compared with the cells lacking the receptors. The results demonstrated the ability of PEI conjugate in condensation of plasmid DNA and protection against enzyme degradation. The PEI conjugate formed nanoparticles of around 75 nm with higher buffering capacity compared with unmodified PEI. The polyplexes prepared by the modified PEI could increase the level of transgene up to four folds in the cells over-expressing the receptor. The results demonstrated the separation of targeting and delivery domains could be considered as a strategy to restore the amine content of the PEI molecule utilized for targeting ligand conjugation.
Substances chimiques
Asialoglycoprotein Receptor
0
Interleukin-12
187348-17-0
Polyethyleneimine
9002-98-6
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e3002Informations de copyright
© 2020 American Institute of Chemical Engineers.
Références
Kang J-H, Toita R, Murata M. Liver cell-targeted delivery of therapeutic molecules. Crit Rev Biotechnol. 2016;36(1):132-143.
Farazi PA, DePinho RA. Hepatocellular carcinoma pathogenesis: from genes to environment. Nat Rev Cancer. 2006;6(9):674-687.
Bruix J, Llovet JM. Major achievements in hepatocellular carcinoma. Lancet. 2009;373(9664):614-616.
Poelstra K, Prakash J, Beljaars L. Drug targeting to the diseased liver. J Control Release. 2012;161(2):188-197.
Hashida M, Nishikawa M, Yamashita F, Takakura Y. Cell-specific delivery of genes with glycosylated carriers. Adv Drug Deliv Rev. 2001;52(3):187-196.
Morimoto K, Nishikawa M, Kawakami S, et al. Molecular weight-dependent gene transfection activity of unmodified and galactosylated polyethyleneimine on hepatoma cells and mouse liver. Mol Ther. 2003;7(2):254-261.
Popielarski SR, Pun SH, Davis ME. A nanoparticle-based model delivery system to guide the rational design of gene delivery to the liver. 1. Synthesis and characterization. Bioconjug Chem. 2005;16(5):1063-1070.
Jansen RW, Molema G, Ching T, et al. Hepatic endocytosis of various types of mannose-terminated albumins. What is important, sugar recognition, net charge, or the combination of these features. J Biol Chem. 1991;266(5):3343-3348.
Hirata K, Maruyama T, Watanabe H, et al. Genetically engineered mannosylated-human serum albumin as a versatile carrier for liver-selective therapeutics. J Control Release. 2010;145(1):9-16.
Weigel JA, Weigel PH. Characterization of the recombinant rat 175-kDa hyaluronan receptor for endocytosis (HARE). J Biol Chem. 2003;278(44):42802-42811.
Takei Y, Maruyama A, Ferdous A, et al. Targeted gene delivery to sinusoidal endothelial cells: DNA nanoassociate bearing hyaluronan-glycocalyx. FASEB J. 2004;18(6):699-701.
Jin H, Lovell JF, Chen J, et al. Mechanistic insights into LDL nanoparticle-mediated siRNA delivery. Bioconjug Chem. 2011;23(1):33-41.
D'Souza AA, Devarajan PV. Asialoglycoprotein receptor mediated hepatocyte targeting-strategies and applications. J Control Release. 2015;203:126-139.
Thapa B, Kumar P, Zeng H, Narain R. Asialoglycoprotein receptor-mediated gene delivery to hepatocytes using galactosylated polymers. Biomacromolecules. 2015;16(9):3008-3020.
Kim E-M, Jeong H-J, Park I-K, et al. Asialoglycoprotein receptor targeted gene delivery using galactosylated polyethylenimine-graft-poly (ethylene glycol): in vitro and in vivo studies. J Control Release. 2005;108(2-3):557-567.
Nie C, Liu C, Chen G, Dai J, Li H, Shuai X. Hepatocyte-targeted psi RNA delivery mediated by galactosylated poly (ethylene glycol)-graft-polyethylenimine in vitro. J Biomater Appl. 2011;26(3):255-275.
Zhao L, Li Y, Pei D, et al. Glycopolymers/PEI complexes as serum-tolerant vectors for enhanced gene delivery to hepatocytes. Carbohydr Polym. 2019;205:167-175.
Lungwitz U, Breunig M, Blunk T, Göpferich A. Polyethylenimine-based non-viral gene delivery systems. Eur J Pharm Biopharm. 2005;60(2):247-266.
Shi B, Zheng M, Tao W, et al. Challenges in DNA delivery and recent advances in multifunctional polymeric DNA delivery systems. Biomacromolecules. 2017;18(8):2231-2246.
Benjaminsen RV, Mattebjerg MA, Henriksen JR, Moghimi SM, Andresen TL. The possible “proton sponge” effect of polyethylenimine (PEI) does not include change in lysosomal pH. Mol Ther. 2013;21(1):149-157.
Sadeghpour H, Khalvati B, Entezar-Almahdi E, et al. Double domain polyethylenimine-based nanoparticles for integrin receptor mediated delivery of plasmid DNA. Sci Rep. 2018;8(1):6842.
Dehshahri A, Alhashemi SH, Jamshidzadeh A, et al. Comparison of the effectiveness of polyethylenimine, polyamidoamine and chitosan in transferring plasmid encoding interleukin-12 gene into hepatocytes. Macromol Res. 2013;21(12):1322-1330.
Borch RF, Bernstein MD, Durst HD. Cyanohydridoborate anion as a selective reducing agent. J Am Chem Soc. 1971;93(12):2897-2904.
Snyder SL, Sobocinski PZ. An improved 2, 4, 6-trinitrobenzenesulfonic acid method for the determination of amines. Anal Biochem. 1975;64(1):284-288.
Nouri F, Sadeghpour H, Heidari R, Dehshahri A. Preparation, characterization, and transfection efficiency of low molecular weight polyethylenimine-based nanoparticles for delivery of the plasmid encoding CD200 gene. Int J Nanomedicine. 2017;12:5557-5569.
Dehshahri A, Oskuee RK, Ramezani M. Plasmid DNA delivery into hepatocytes using a multifunctional nanocarrier based on sugar-conjugated polyethylenimine. Gene Ther Mol Biol. 2012;14:62-71.
Hall H Jr. Correlation of the base strengths of amines1. J Am Chem Soc. 1957;79(20):5441-5444.
Yin H, Kanasty RL, Eltoukhy AA, Vegas AJ, Dorkin JR, Anderson DG. Non-viral vectors for gene-based therapy. Nat Rev Genet. 2014;15(8):541-555.
Amin ZR, Rahimizadeh M, Eshghi H, Dehshahri A, Ramezani M. The effect of cationic charge density change on transfection efficiency of polyethylenimine. Iran J Basic Med Sci. 2013;16(2):150-156.
Lin Z, Wang C, Feng X, Liu M, Li J, Bai C. The observation of the local ordering characteristics of spermidine-condensed DNA: atomic force microscopy and polarizing microscopy studies. Nucleic Acids Res. 1998;26(13):3228-3234.
Oskuee RK, Dehshahri A, Shier T, Ramezani M, eds. Modified polyethylenimine: self assemble nanoparticle forming polymer for pDNA delivery. Iran J Basic Med Sci. 2008;11(1):33-40.
Dehshahri A, Kazemi Oskuee R, Thomas Shier W, Ramezani M. β-galactosylated alkyl-oligoamine derivatives of polyethylenimine enhanced pDNA delivery into hepatic cells with reduced toxicity. Curr Nanosci. 2012;8(4):548-555.
Dehshahri A, Sadeghpour H, Keykhaee M, Khalvati B, Sheikhsaran F. Enhanced delivery of plasmid encoding interleukin-12 gene by diethylene triamine penta-acetic acid (DTPA)-conjugated PEI nanoparticles. Appl Biochem Biotechnol. 2016;179(2):251-269.
Dehshahri A, Sadeghpour H, Oskuee RK, et al. Interleukin-12 plasmid DNA delivery using l-thyroxine-conjugated polyethylenimine nanocarriers. J Nanopart Res. 2014;16(5):2423.
Doody AM, Korley JN, Dang KP, Zawaneh PN, Putnam D. Characterizing the structure/function parameter space of hydrocarbon-conjugated branched polyethylenimine for DNA delivery in vitro. J Control Release. 2006;116(2):227-237.
Gabrielson NP, Pack DW. Acetylation of polyethylenimine enhances gene delivery via weakened polymer/DNA interactions. Biomacromolecules. 2006;7(8):2427-2435.
Khalvati B, Sheikhsaran F, Sharifzadeh S, et al. Delivery of plasmid encoding interleukin-12 gene into hepatocytes by conjugated polyethylenimine-based nanoparticles. Artif Cells Nanomed Biotechnol. 2017; 4;45(5):1036-1044.
Sabahi Z, Samani SM, Dehshahri A. Conjugation of poly (amidoamine) dendrimers with various acrylates for improved delivery of plasmid encoding interleukin-12 gene. J Biomater Appl. 2015;29(7):941-953.
Dai Z, Wu C. How does DNA complex with polyethylenimine with different chain lengths and topologies in their aqueous solution mixtures? Macromolecules. 2012;45(10):4346-4353.
Nimesh S, Aggarwal A, Kumar P, Singh Y, Gupta K, Chandra R. Influence of acyl chain length on transfection mediated by acylated PEI nanoparticles. Int J Pharm. 2007;337(1-2):265-274.
Sahay G, Alakhova DY, Kabanov AV. Endocytosis of nanomedicines. J Control Release. 2010;145(3):182-195.
Sheikhsaran F, Sadeghpour H, Khalvati B, Entezar-Almahdi E, Dehshahri A. Tetraiodothyroacetic acid-conjugated polyethylenimine for integrin receptor mediated delivery of the plasmid encoding IL-12 gene. Colloids Surf B Biointerfaces. 2017;150:426-436.
Rensen PC, Sliedregt LA, Ferns M, et al. Determination of the upper size limit for uptake and processing of ligands by the asialoglycoprotein receptor on hepatocytesin vitro and in vivo. J Biol Chem. 2001;276(40):37577-37584.
Seymour LW. Passive tumor targeting of soluble macromolecules and drug conjugates. Crit Rev Ther Drug Carrier Syst. 1992;9(2):135-187.
Guy J, Drabek D, Antoniou M. Delivery of DNA into mammalian cells by receptor-mediated endocytosis and gene therapy. Mol Biotechnol. 1995;3(3):237-248.
Ogris M, Steinlein P, Kursa M, Mechtler K, Kircheis R, Wagner E. The size of DNA/transferrin-PEI complexes is an important factor for gene expression in cultured cells. Gene Ther. 1998;5(10):1425-1433.
Couzin-Frankel J. Cancer immunotherapy. Science. 2013;342:1432-1433.
Janat-Amsbury MM, Yockman JW, Anderson ML, KIEBACK DG, Kim SW. Combination of local, non-viral IL12 gene therapy and systemic paclitaxel chemotherapy in a syngeneic ID8 mouse model for human ovarian cancer. Anticancer Res. 2006;26(5A):3223-3228.
Tugues S, Burkhard S, Ohs I, et al. New insights into IL-12-mediated tumor suppression. Cell Death Differ. 2015;22(2):237-246.
Lyerly HK, Osada T, Hartman ZC. Right time and place for IL12: targeted delivery stimulates immune therapy. Clin Cancer Res. 2019;25(1):9-11.
Parhamifar L, Larsen AK, Hunter AC, Andresen TL, Moghimi SM. Polycation cytotoxicity: a delicate matter for nucleic acid therapy-focus on polyethylenimine. Soft Matter. 2010;6(17):4001-4009.
Hall A, Lächelt U, Bartek J, Wagner E, Moghimi SM. Polyplex evolution: understanding biology, optimizing performance. Mol Ther. 2017;25(7):1476-1490.
Larsen AK, Malinska D, Koszela-Piotrowska I, Parhamifar L, Hunter AC, Moghimi SM. Polyethylenimine-mediated impairment of mitochondrial membrane potential, respiration and membrane integrity: implications for nucleic acid delivery and gene therapy. Mitochondrion. 2012;12(1):162-168.
Cook SE, Park IK, Kim EM, et al. Galactosylated polyethylenimine-graft-poly (vinyl pyrrolidone) as a hepatocyte-targeting gene carrier. J Control Release. 2005;105(1-2):151-163.