Local anesthesia enhanced with increasing high-frequency ultrasound intensity.


Journal

Drug delivery and translational research
ISSN: 2190-3948
Titre abrégé: Drug Deliv Transl Res
Pays: United States
ID NLM: 101540061

Informations de publication

Date de publication:
10 2020
Historique:
pubmed: 21 4 2020
medline: 3 11 2021
entrez: 21 4 2020
Statut: ppublish

Résumé

The effect of local anesthetics, particularly those which are hydrophilic, such as tetrodotoxin, is impeded by tissue barriers that restrict access to individual nerve cells. Methods of enhancing penetration of tetrodotoxin into nerve include co-administration with chemical permeation enhancers, nanoencapsulation, and insonation with very low acoustic intensity ultrasound and microbubbles. In this study, we examined the effect of acoustic intensity on nerve block by tetrodotoxin and compared it to the effect on nerve block by bupivacaine, a more hydrophobic local anesthetic. Anesthetics were applied in peripheral nerve blockade in adult Sprague-Dawley rats. Insonation with 1-MHz ultrasound at acoustic intensity greater than 0.5 W/cm

Identifiants

pubmed: 32307675
doi: 10.1007/s13346-020-00760-1
pii: 10.1007/s13346-020-00760-1
pmc: PMC7483597
mid: NIHMS1585978
doi:

Substances chimiques

Anesthetics, Local 0
Bupivacaine Y8335394RO

Types de publication

Journal Article Research Support, N.I.H., Extramural

Langues

eng

Sous-ensembles de citation

IM

Pagination

1507-1516

Subventions

Organisme : NIGMS NIH HHS
ID : R35 GM131728
Pays : United States

Références

Joshi G, Gandhi K, Shah N, Gadsden J, Corman SL. Peripheral nerve blocks in the management of postoperative pain: challenges and opportunities. J Clin Anesth. 2016;35:524–9.
doi: 10.1016/j.jclinane.2016.08.041
Piña-Oviedo S, Ortiz-Hidalgo C. The normal and neoplastic perineurium: a review. Adv Anat Pathol. 2008;15:147–64.
doi: 10.1097/PAP.0b013e31816f8519
Kohane DS, Yieh J, Lu NT, Langer R, Strichartz GR, Berde CB. A re-examination of tetrodotoxin for prolonged duration local anesthesia. Anesthesiology. 1998;89:119–31.
doi: 10.1097/00000542-199807000-00019
Kohane DS, Lu NT, Gökgöl-Kline AC, Shubina M, Kuang Y, Hall S, et al. The local anesthetic properties and toxicity of saxitonin homologues for rat sciatic nerve block in vivo. Reg Anesth Pain Med. 2000;25:52–9.
doi: 10.1097/00115550-200001000-00010
Hille B. The receptor for tetrodotoxin and saxitoxin. A structural hypothesis. Biophys J. 1975;15:615–9.
doi: 10.1016/S0006-3495(75)85842-5
Rodriguez-Navarro AJ, Lagos N, Lagos M, Braghetto I, Csendes A, Hamilton J, et al. Neosaxitoxin as a local anesthetic: preliminary observations from a first human trial. Anesthesiology. 2007;106:339–45.
doi: 10.1097/00000542-200702000-00023
Lobo K, Donado C, Cornelissen L, Kim J, Ortiz R, Peake RWA, et al. A phase 1, dose-escalation, double-blind, block-randomized, controlled trial of safety and efficacy of neosaxitoxin alone and in combination with 0.2% bupivacaine, with and without epinephrine, for cutaneous anesthesia. Anesthesiology. 2015;123:873–85.
doi: 10.1097/ALN.0000000000000831
Simons EJ, Bellas E, Lawlor MW, Kohane DS. Effect of chemical permeation enhancers on nerve blockade. Mol Pharm. 2009;6:265–73.
doi: 10.1021/mp800167a
Santamaria CM, Zhan C, McAlvin JB, Zurakowski D, Kohane DS. Tetrodotoxin, epinephrine, and chemical permeation enhancer combinations in peripheral nerve blockade. Anesth. Analg. Anesthesia and analgesia; 2017;1.
Liu Q, Santamaria CM, Wei T, Zhao C, Ji T, Yang T, et al. Hollow silica nanoparticles penetrate the peripheral nerve and enhance the nerve blockade from tetrodotoxin. Nano Lett. 2017;18:32–7.
doi: 10.1021/acs.nanolett.7b02461
Oberli MA, Schoellhammer CM, Langer R, Blankschtein D. Ultrasound-enhanced transdermal delivery: recent advances and future challenges. Ther Deliv. 6 ed. Future Science Ltd London, UK; 2014;5:843–57.
Yang R, Wei T, Goldberg H, Wang W, Cullion K, Kohane DS. Getting drugs across biological barriers. Adv Mater. 2017;29:1606596.
doi: 10.1002/adma.201606596
Ahmadi F, McLoughlin IV, Chauhan S, ter-Haar G. Bio-effects and safety of low-intensity, low-frequency ultrasonic exposure. Prog Biophys Mol Biol 2012;108:119–138.
Cullion K, Santamaria CM, Zhan C, Zurakowski D, Sun T, Pemberton GL, et al. High-frequency, low-intensity ultrasound and microbubbles enhance nerve blockade. J Control Release. 2018;276:150–6.
doi: 10.1016/j.jconrel.2018.02.027
Tiwari SB, Pai RM, Udupa N. Influence of ultrasound on the percutaneous absorption of ketorolac tromethamine in vitro across rat skin. Drug Deliv. 2004;11:47–51.
doi: 10.1080/10717540490265261
Qin S, Caskey CF, Ferrara KW. Ultrasound contrast microbubbles in imaging and therapy: physical principles and engineering. Phys Med Biol IOP Publishing; 2009;54:R27–57.
Shin J, Kong C, Cho JS, Lee J, Koh CS, Yoon M-S, et al. Focused ultrasound-mediated noninvasive blood-brain barrier modulation: preclinical examination of efficacy and safety in various sonication parameters. Neurosurg Focus American Association of Neurological Surgeons; 2018;44:E15.
Kohane DS, Sankar WN, Shubina M, Hu D, Rifai N, Berde CB. Sciatic nerve blockade in infant, adolescent, and adult rats: a comparison of ropivacaine with bupivacaine. Anesthesiology. 1998;89:1199–208 discussion10A.
doi: 10.1097/00000542-199811000-00021
Azagury A, Amar-Lewis E, Yudilevitch Y, Isaacson C, Laster B, Kost J. Ultrasound effect on cancerous versus non-cancerous cells. Ultrasound Med Biol. 2016;42:1560–7.
doi: 10.1016/j.ultrasmedbio.2016.02.005
Guan L, Xu G. Damage effect of high-intensity focused ultrasound on breast cancer tissues and their vascularities. World J Surg Oncol. 2016;14:153.
doi: 10.1186/s12957-016-0908-3
Thalhammer JG, Vladimirova M, Bershadsky B, Strichartz GR. Neurologic evaluation of the rat during sciatic nerve block with lidocaine. Anesthesiology. 1995;82:1013–25.
doi: 10.1097/00000542-199504000-00026
Rwei AY, Paris JL, Wang B, Wang W, Axon CD, Vallet-Regí M, et al. Ultrasound-triggered local anaesthesia. Nat Biomed Eng Nature Publishing Group; 2017;1:644–53.
Padera R, Bellas E, Tse JY, Hao D, Kohane DS. Local myotoxicity from sustained release of bupivacaine from microparticles. Anesthesiology The American Society of Anesthesiologists; 2008;108:921–8.
Pitt WG, Husseini GA, Staples BJ. Ultrasonic drug delivery--a general review. Expert Opin Drug Deliv Taylor & Francis; 2004;1:37–56.
Ragsdale DS, McPhee JC, Scheuer T, Catterall WA. Molecular determinants of state-dependent block of Na+ channels by local anesthetics. Science. 1994;265:1724–8.
doi: 10.1126/science.8085162
Yang R, Saarinen R, Okonkwo OS, Hao Y, Mehta M, Kohane DS. Transtympanic delivery of local anesthetics for pain in acute otitis media. Mol Pharm. 2019;16:1555–62.
doi: 10.1021/acs.molpharmaceut.8b01235
Tzu-Yin W, Wilson KE, Machtaler S, Willmann JK. Ultrasound and microbubble guided drug delivery: mechanistic understanding and clinical implications. Curr Pharm Biotechnol. 2013;14:743–52.
pubmed: 24372231
Suen W-LL, Wong HS, Yu Y, Lau LCM, Lo AC-Y, Chau Y. Ultrasound-mediated transscleral delivery of macromolecules to the posterior segment of rabbit eye in vivo. Invest Ophthalmol Vis Sci The Association for Research in Vision and Ophthalmology; 2013;54:4358–65.
Raymond SB, Treat LH, Dewey JD, McDannold NJ, Hynynen K, Bacskai BJ. Ultrasound enhanced delivery of molecular imaging and therapeutic agents in Alzheimer’s disease mouse models. Bush AI, editor. PLoS ONE. 2008;3:e2175.
Ting C-Y, Fan C-H, Liu H-L, Huang C-Y, Hsieh H-Y, Yen T-C, et al. Concurrent blood-brain barrier opening and local drug delivery using drug-carrying microbubbles and focused ultrasound for brain glioma treatment. Biomaterials. 2012;33:704–12.
doi: 10.1016/j.biomaterials.2011.09.096
Mitragotri S, Edwards DA, Blankschtein D, Langer R. A mechanistic study of ultrasonically-enhanced transdermal drug delivery. J Pharm Sci. 1995;84:697–706.
doi: 10.1002/jps.2600840607
Prausnitz MR, Langer R. Transdermal drug delivery. Nat Biotechnol. 2008;26:1261–8.
doi: 10.1038/nbt.1504
Newman CMH, Bettinger T. Gene therapy progress and prospects: ultrasound for gene transfer. Gene Ther. 2007;14:465–75.
doi: 10.1038/sj.gt.3302925
Panje CM, Wang DS, Willmann JK. Ultrasound and microbubble-mediated gene delivery in cancer: progress and perspectives. Investig Radiol. 2013;48:755–69.
doi: 10.1097/RLI.0b013e3182982cc1
Yoon CS, Park JH. Ultrasound-mediated gene delivery. Expert Opin Drug Deliv. Taylor & Francis; 2010;7:321–30.
Thomas RG, Jonnalagadda US, Kwan JJ. Biomedical applications for gas-stabilizing solid cavitation agents. Langmuir American Chemical Society; 2019;35:10106–15.
Treat LH, McDannold N, Zhang Y, Vykhodtseva N, Hynynen K. Improved anti-tumor effect of liposomal doxorubicin after targeted blood-brain barrier disruption by MRI-guided focused ultrasound in rat glioma. Ultrasound Med Biol. 2012;38:1716–25.
doi: 10.1016/j.ultrasmedbio.2012.04.015
Fujii H, Matkar P, Liao C, Rudenko D, Lee PJ, Kuliszewski MA, et al. Optimization of ultrasound-mediated anti-angiogenic cancer gene therapy. Mol Ther Nucleic Acids. 2013;2:e94.
doi: 10.1038/mtna.2013.20
Chen S, Ding J-H, Bekeredjian R, Yang B-Z, Shohet RV, Johnston SA, et al. Efficient gene delivery to pancreatic islets with ultrasonic microbubble destruction technology. PNAS. 2006;103:8469–74.
doi: 10.1073/pnas.0602921103
US EPA; Jan. 2019, Estimation Program Interface (EPI) Suite™ for Microsoft® Windows, v4.11. United States Environmental Protection Agencym, Washington, DC, USA.
Hansch C, Leo A, Hoekman D. Exploring QSAR: hydrophobic, electronic, steric constants. Washington, DC: American Chemical Society; 1995.
Morishita K, Karasuno H, Yokoi Y, Morozumi K, Ogihara H, Ito T. Effects of therapeutic ultrasound on intramuscular blood circulation and oxygen dynamics. Journal of the Japanese Physical Therapy Association 2014;17:1–7.
Maxwell AD, Cain CA, Duryea AP, Yuan L, Gurm HS, Xu Z. Noninvasive thrombolysis using pulsed ultrasound cavitation therapy - histotripsy. Ultrasound Med Biol. 2009;35:1982–94.
doi: 10.1016/j.ultrasmedbio.2009.07.001
Foley JL, Little JW, Vaezy S. Effects of high-intensity focused ultrasound on nerve conduction. Muscle nerve, Wiley Subscription Services, Inc, A Wiley Company; 2008;37:241–50.
Foley JL, Little JW, Starr FL, Frantz C, Vaezy S. Image-guided HIFU neurolysis of peripheral nerves to treat spasticity and pain. Ultrasound Med Biol. 2004;30:1199–207.
doi: 10.1016/j.ultrasmedbio.2004.07.004
Foley JL, Little JW, Vaezy S. Image-guided high-intensity focused ultrasound for conduction block of peripheral nerves. Annals of biomedical engineering Kluwer Academic Publishers-Plenum Publishers; 2006;35:109–19.
Warden SJ. A new direction for ultrasound therapy in sports medicine. Sports Med Springer International Publishing; 2003;33:95–107.
Noble JG, Lee V, Griffith-Noble F. Therapeutic ultrasound: the effects upon cutaneous blood flow in humans. Ultrasound Med Biol. 2007;33:279–85.
doi: 10.1016/j.ultrasmedbio.2006.08.001
Fabrizio PA, Schmidt JA, Clemente FR, Lankiewicz LA, Levine ZA. Acute effects of therapeutic ultrasound delivered at varying parameters on the blood flow velocity in a muscular distribution artery. J Orthop Sports Phys Ther. JOSPT, Inc. JOSPT, 1033 North Fairfax Street, Suite 304, Alexandria, VA 22134–1540; 1996;24:294–302.
Sundaram J, Mellein BR, Mitragotri S. An experimental and theoretical analysis of ultrasound-induced permeabilization of cell membranes. Biophys J. 2003;84:3087–101.
doi: 10.1016/S0006-3495(03)70034-4
Zhou B, Leung BYK, Sun L. The effects of low-intensity ultrasound on fat reduction of rat model. Biomed Res Int Hinedawi; 2017;2017:4701481–8.
Mehier-Humbert S, Bettinger T, Yan F, Guy RH. Plasma membrane poration induced by ultrasound exposure: implication for drug delivery. J Control Release. 2005;104:213–22.
doi: 10.1016/j.jconrel.2005.01.007

Auteurs

Kathleen Cullion (K)

Laboratory for Biomaterials and Drug Delivery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
Department of Medical Critical Care, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.

Laura C Petishnok (LC)

Laboratory for Biomaterials and Drug Delivery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
Department of Medical Critical Care, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.

Tao Sun (T)

Focused Ultrasound Laboratory, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.

Claudia M Santamaria (CM)

Laboratory for Biomaterials and Drug Delivery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.

Grant L Pemberton (GL)

Laboratory for Biomaterials and Drug Delivery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.

Nathan J McDannold (NJ)

Focused Ultrasound Laboratory, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.

Daniel S Kohane (DS)

Laboratory for Biomaterials and Drug Delivery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA. Daniel.Kohane@childrens.harvard.edu.
Department of Anesthesiology, Critical Care, and Pain Management, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave, Enders Building, Room 361, Boston, MA, 02115, USA. Daniel.Kohane@childrens.harvard.edu.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH