Nicotinamide riboside supplementation alters body composition and skeletal muscle acetylcarnitine concentrations in healthy obese humans.
NAD
acetylcarnitine
body composition
human
insulin sensitivity
metabolic health
mitochondrial function
nicotinamide riboside
obesity
Journal
The American journal of clinical nutrition
ISSN: 1938-3207
Titre abrégé: Am J Clin Nutr
Pays: United States
ID NLM: 0376027
Informations de publication
Date de publication:
01 08 2020
01 08 2020
Historique:
received:
25
10
2019
accepted:
23
03
2020
pubmed:
23
4
2020
medline:
7
10
2020
entrez:
23
4
2020
Statut:
ppublish
Résumé
Nicotinamide riboside (NR) is an NAD+ precursor that boosts cellular NAD+ concentrations. Preclinical studies have shown profound metabolic health effects after NR supplementation. We aimed to investigate the effects of 6 wk NR supplementation on insulin sensitivity, mitochondrial function, and other metabolic health parameters in overweight and obese volunteers. A randomized, double-blinded, placebo-controlled, crossover intervention study was conducted in 13 healthy overweight or obese men and women. Participants received 6 wk NR (1000 mg/d) and placebo supplementation, followed by broad metabolic phenotyping, including hyperinsulinemic-euglycemic clamps, magnetic resonance spectroscopy, muscle biopsies, and assessment of ex vivo mitochondrial function and in vivo energy metabolism. Markers of increased NAD+ synthesis-nicotinic acid adenine dinucleotide and methyl nicotinamide-were elevated in skeletal muscle after NR compared with placebo. NR increased body fat-free mass (62.65% ± 2.49% compared with 61.32% ± 2.58% in NR and placebo, respectively; change: 1.34% ± 0.50%, P = 0.02) and increased sleeping metabolic rate. Interestingly, acetylcarnitine concentrations in skeletal muscle were increased upon NR (4558 ± 749 compared with 3025 ± 316 pmol/mg dry weight in NR and placebo, respectively; change: 1533 ± 683 pmol/mg dry weight, P = 0.04) and the capacity to form acetylcarnitine upon exercise was higher in NR than in placebo (2.99 ± 0.30 compared with 2.40 ± 0.33 mmol/kg wet weight; change: 0.53 ± 0.21 mmol/kg wet weight, P = 0.01). However, no effects of NR were found on insulin sensitivity, mitochondrial function, hepatic and intramyocellular lipid accumulation, cardiac energy status, cardiac ejection fraction, ambulatory blood pressure, plasma markers of inflammation, or energy metabolism. NR supplementation of 1000 mg/d for 6 wk in healthy overweight or obese men and women increased skeletal muscle NAD+ metabolites, affected skeletal muscle acetylcarnitine metabolism, and induced minor changes in body composition and sleeping metabolic rate. However, no other metabolic health effects were observed.This trial was registered at clinicaltrials.gov as NCT02835664.
Sections du résumé
BACKGROUND
Nicotinamide riboside (NR) is an NAD+ precursor that boosts cellular NAD+ concentrations. Preclinical studies have shown profound metabolic health effects after NR supplementation.
OBJECTIVES
We aimed to investigate the effects of 6 wk NR supplementation on insulin sensitivity, mitochondrial function, and other metabolic health parameters in overweight and obese volunteers.
METHODS
A randomized, double-blinded, placebo-controlled, crossover intervention study was conducted in 13 healthy overweight or obese men and women. Participants received 6 wk NR (1000 mg/d) and placebo supplementation, followed by broad metabolic phenotyping, including hyperinsulinemic-euglycemic clamps, magnetic resonance spectroscopy, muscle biopsies, and assessment of ex vivo mitochondrial function and in vivo energy metabolism.
RESULTS
Markers of increased NAD+ synthesis-nicotinic acid adenine dinucleotide and methyl nicotinamide-were elevated in skeletal muscle after NR compared with placebo. NR increased body fat-free mass (62.65% ± 2.49% compared with 61.32% ± 2.58% in NR and placebo, respectively; change: 1.34% ± 0.50%, P = 0.02) and increased sleeping metabolic rate. Interestingly, acetylcarnitine concentrations in skeletal muscle were increased upon NR (4558 ± 749 compared with 3025 ± 316 pmol/mg dry weight in NR and placebo, respectively; change: 1533 ± 683 pmol/mg dry weight, P = 0.04) and the capacity to form acetylcarnitine upon exercise was higher in NR than in placebo (2.99 ± 0.30 compared with 2.40 ± 0.33 mmol/kg wet weight; change: 0.53 ± 0.21 mmol/kg wet weight, P = 0.01). However, no effects of NR were found on insulin sensitivity, mitochondrial function, hepatic and intramyocellular lipid accumulation, cardiac energy status, cardiac ejection fraction, ambulatory blood pressure, plasma markers of inflammation, or energy metabolism.
CONCLUSIONS
NR supplementation of 1000 mg/d for 6 wk in healthy overweight or obese men and women increased skeletal muscle NAD+ metabolites, affected skeletal muscle acetylcarnitine metabolism, and induced minor changes in body composition and sleeping metabolic rate. However, no other metabolic health effects were observed.This trial was registered at clinicaltrials.gov as NCT02835664.
Identifiants
pubmed: 32320006
pii: S0002-9165(22)00810-3
doi: 10.1093/ajcn/nqaa072
pmc: PMC7398770
doi:
Substances chimiques
Pyridinium Compounds
0
nicotinamide-beta-riboside
0I8H2M0L7N
NAD
0U46U6E8UK
Niacinamide
25X51I8RD4
Acetylcarnitine
6DH1W9VH8Q
Banques de données
ClinicalTrials.gov
['NCT02835664']
Types de publication
Journal Article
Randomized Controlled Trial
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
413-426Commentaires et corrections
Type : CommentIn
Informations de copyright
Copyright © The Author(s) on behalf of the American Society for Nutrition 2020.
Références
Can J Sport Sci. 1991 Mar;16(1):23-9
pubmed: 1645211
Sci Rep. 2016 May 27;6:26933
pubmed: 27230286
Mol Nutr Food Res. 2017 Aug;61(8):
pubmed: 28211258
Nat Rev Mol Cell Biol. 2016 Nov;17(11):679-690
pubmed: 27552971
Am J Clin Nutr. 2016 May;103(5):1260-6
pubmed: 27053384
Circulation. 2007 Apr 24;115(16):2091-3
pubmed: 17452617
Physiol Rep. 2019 Jul;7(12):e14139
pubmed: 31207144
Int J Obes (Lond). 2011 Aug;35(8):1124-30
pubmed: 21102553
Pharmacol Rev. 2012 Jan;64(1):166-87
pubmed: 22106091
Cell Rep. 2019 Aug 13;28(7):1717-1728.e6
pubmed: 31412242
Cell. 2004 May 14;117(4):495-502
pubmed: 15137942
Diabetes. 2010 Sep;59(9):2117-25
pubmed: 20573749
Int J Mol Sci. 2019 Sep 05;20(18):
pubmed: 31491949
Cell Metab. 2016 Aug 9;24(2):269-82
pubmed: 27508874
Am J Clin Nutr. 2018 Aug 1;108(2):343-353
pubmed: 29992272
Mol Metab. 2017 May 29;6(8):819-832
pubmed: 28752046
NPJ Aging Mech Dis. 2018 Aug 20;4:8
pubmed: 30155270
Int J Sports Med. 1985 Aug;6(4):197-201
pubmed: 4044103
Anal Biochem. 1973 May;53(1):86-97
pubmed: 4351123
Clin Chem. 1972 Jun;18(6):499-502
pubmed: 4337382
Magn Reson Med. 2017 Feb;77(2):505-510
pubmed: 26887359
PLoS One. 2017 Dec 6;12(12):e0186459
pubmed: 29211728
Trends Cell Biol. 2014 Aug;24(8):464-71
pubmed: 24786309
Am J Clin Nutr. 2015 Jan;101(1):65-71
pubmed: 25527751
Acta Physiol Scand. 1967 Oct-Nov;71(2):140-50
pubmed: 5584523
Am J Physiol. 1979 Sep;237(3):E214-23
pubmed: 382871
Proc Natl Acad Sci U S A. 2018 Jul 24;115(30):7789-7794
pubmed: 29987027
Am J Physiol Heart Circ Physiol. 2012 Feb 1;302(3):H709-15
pubmed: 22101529
J Physiol. 1949 Aug;109(1-2):1-9
pubmed: 15394301
Circulation. 2018 May 22;137(21):2256-2273
pubmed: 29217642
Diabetologia. 2019 Jun;62(6):888-899
pubmed: 30772929
Invest Radiol. 2017 Jul;52(7):412-418
pubmed: 28195849
EMBO Mol Med. 2014 Apr 06;6(6):721-31
pubmed: 24711540
Diabetes. 2015 Apr;64(4):1193-201
pubmed: 25352640
Nat Commun. 2016 Oct 10;7:12948
pubmed: 27721479
J Physiol. 2002 Nov 1;544(3):949-56
pubmed: 12411537
Cell Metab. 2012 Jun 6;15(6):838-47
pubmed: 22682224
Diabetes Care. 2016 Dec;39(12):2211-2217
pubmed: 27852684
J Physiol. 2020 Feb;598(4):731-754
pubmed: 31710095
Cell Metab. 2011 Nov 2;14(5):612-22
pubmed: 22055504
Nat Commun. 2018 Mar 29;9(1):1286
pubmed: 29599478
Sci Rep. 2019 Jul 5;9(1):9772
pubmed: 31278280
J Cell Biol. 2012 Oct 15;199(2):205-9
pubmed: 23071150
Am J Clin Nutr. 1982 Nov;36(5):936-42
pubmed: 7137077
Ann N Y Acad Sci. 1959 Sep 25;82:420-30
pubmed: 13833973
Am J Hypertens. 2006 Mar;19(3):243-50
pubmed: 16500508
Med Sci Sports Exerc. 1995 Dec;27(12):1692-7
pubmed: 8614327
Cell Metab. 2011 Oct 5;14(4):528-36
pubmed: 21982712
Hum Exp Toxicol. 2016 Nov;35(11):1149-1160
pubmed: 26791540
J Clin Invest. 2014 Nov;124(11):4915-25
pubmed: 25271624
Mol Metab. 2018 Jun;12:39-47
pubmed: 29706321
PLoS One. 2012;7(7):e42357
pubmed: 22848760