Neuroregenerative and protective functions of Leukemia Inhibitory Factor in perinatal hypoxic-ischemic brain injury.


Journal

Experimental neurology
ISSN: 1090-2430
Titre abrégé: Exp Neurol
Pays: United States
ID NLM: 0370712

Informations de publication

Date de publication:
08 2020
Historique:
received: 14 01 2020
revised: 13 04 2020
accepted: 17 04 2020
pubmed: 23 4 2020
medline: 2 2 2021
entrez: 23 4 2020
Statut: ppublish

Résumé

Neonatal hypoxic-ischemic encephalopathy remains the most important neurological problem of the newborn. Delays in diagnosing perinatal brain injuries are common, preventing access to acute therapies. Therefore, there is a critical need for therapeutic strategies that are beneficial when delivered beyond 24 h after birth. Here we show that Leukemia Inhibitory Factor (LIF) functions as an essential injury-induced neurotrophic cytokine in the CNS and that non-invasively administering LIF as late as 3 days after a hypoxic-ischemic insult improves neurological function. Using a mouse model of late preterm brain injury we show that astroglial and microglial/macrophage reactivity to hypoxia-ischemia was diminished at 3 days of recovery, but then exacerbated at 2 weeks of recovery in LIF haplodeficient mice. There also were significantly more CD68+/Iba-1+ cells in the ipsilateral striatum in LIF-Het mice compared to WT mice at 2 weeks of recovery. This desynchronized glial response was accompanied by increased neuronal cell death in the striatum and neocortex (Fluorojade C), hypomyelination (reduced MBP staining and thinner external capsule), increased extent of brain damage (Nissl) and diminished neurological function on sensorimotor tests. To our surprise, injured LIF-Het mice had ~7-fold higher IGF-1 levels than injured WT mice at 3 days after HI injury. Intranasally administered LIF activated the Jak-Stat-3 pathway both within the subventricular zone and the neocortex at 30 min after administration. When delivered with a delay of 3 days after the insult, intranasal LIF reduced the extent of brain injury by ~60%, attenuated astrogliosis and microgliosis in striatum, improved subcortical white matter thickness, increased numbers of Olig2+ cells in corpus callosum and improved performance on sensorimotor tests at 2 weeks of recovery. These studies provide key pre-clinical data recommending LIF administration as a neuroprotectant and regenerative cytokine and they highlight the feasibility of pursuing new therapeutics targeting the tertiary phase of neurodegeneration for hypoxic-ischemic encephalopathies.

Identifiants

pubmed: 32320698
pii: S0014-4886(20)30155-2
doi: 10.1016/j.expneurol.2020.113324
pmc: PMC7304440
mid: NIHMS1595800
pii:
doi:

Substances chimiques

Leukemia Inhibitory Factor 0
Neuroprotective Agents 0

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

113324

Subventions

Organisme : NINDS NIH HHS
ID : R01 NS116828
Pays : United States

Informations de copyright

Copyright © 2020 Elsevier Inc. All rights reserved.

Déclaration de conflit d'intérêts

Declaration of Competing Interest The authors have no conflicts of interest to report.

Références

Radiographics. 2010 May;30(3):763-80
pubmed: 20462993
J Neuroinflammation. 2012 Aug 16;9:198
pubmed: 22894638
J Neurosci Res. 2009 Nov 15;87(15):3343-55
pubmed: 19598242
J Clin Invest. 1994 Jun;93(6):2632-8
pubmed: 8201002
Arch Neurol. 2012 Jan;69(1):29-38
pubmed: 21911655
PLoS One. 2012;7(10):e47379
pubmed: 23077604
Neurosci Lett. 2014 Nov 7;583:16-20
pubmed: 25219375
Glia. 2014 Feb;62(2):159-70
pubmed: 24307565
Nat Rev Neurol. 2015 Apr;11(4):192-208
pubmed: 25686754
Glia. 2002 Jul;39(1):85-97
pubmed: 12112378
Ann Neurol. 2005 Aug;58(2):303-8
pubmed: 16010659
Metab Brain Dis. 2019 Apr;34(2):631-640
pubmed: 30612292
Zhongguo Dang Dai Er Ke Za Zhi. 2014 Sep;16(9):933-8
pubmed: 25229963
J Neurosci Res. 2016 Dec;94(12):1531-1545
pubmed: 27661001
Eur J Neurosci. 2014 Oct;40(7):3111-9
pubmed: 25041106
Acta Neurol Scand. 2010 Jan;121(1):44-50
pubmed: 20074285
Nature. 1992 Sep 3;359(6390):76-9
pubmed: 1522892
Mol Neurobiol. 2017 Jan;54(1):608-622
pubmed: 26746670
J Neurotrauma. 2016 Aug 15;33(16):1522-34
pubmed: 26541248
Neurosci Lett. 1998 Jun 12;249(1):1-4
pubmed: 9672374
AAPS J. 2015 Jul;17(4):780-7
pubmed: 25801717
Ann Neurol. 2012 Jan;71(1):93-109
pubmed: 22275256
J Cell Physiol. 1991 Sep;148(3):430-9
pubmed: 1918172
Pediatrics. 2008 Aug;122(2):383-91
pubmed: 18676557
Glia. 2006 May;53(7):696-703
pubmed: 16498619
Circulation. 2009 Jan 27;119(3):480-6
pubmed: 19171871
Br J Anaesth. 2018 May;120(5):1056-1065
pubmed: 29661383
J Neurosci. 2015 Jun 10;35(23):8855-65
pubmed: 26063918
J Neurosci. 2012 Feb 8;32(6):2100-9
pubmed: 22323722
Eur J Neurol. 2008 Jan;15(1):29-37
pubmed: 18042242
Glia. 2005 Jul;51(1):73-9
pubmed: 15779090
Glia. 2018 Oct;66(10):2137-2157
pubmed: 30277602
Exp Neurol. 2004 Aug;188(2):391-407
pubmed: 15246839
J Perinatol. 2015 Mar;35(3):186-91
pubmed: 25393080
Schizophr Res. 2017 Jun;184:2-13
pubmed: 27913162
Neuroscience. 2007 Aug 24;148(2):501-9
pubmed: 17664044
Lancet Neurol. 2012 Jun;11(6):556-66
pubmed: 22608669
Pediatr Res. 2020 Apr;87(5):879-884
pubmed: 31261373
Pain Manag. 2018 May;8(3):231-245
pubmed: 29683378
Dev Neurosci. 2017;39(1-4):338-351
pubmed: 28628913
J Drug Target. 2010 Apr;18(3):179-90
pubmed: 19807216
Pharmacol Biochem Behav. 1983 May;18(5):753-9
pubmed: 6407036
Mol Cell Neurosci. 2019 Jan;94:1-10
pubmed: 30391355
Brain Res. 2010 Oct 14;1356:130-8
pubmed: 20692236
Br J Anaesth. 2018 May;120(5):960-968
pubmed: 29661413
J Neurosci. 1999 May 1;19(9):3556-66
pubmed: 10212315
Am J Pathol. 2000 Mar;156(3):965-76
pubmed: 10702412
Development. 1994 Jan;120(1):143-53
pubmed: 8119123
Glia. 2008 Apr 15;56(6):686-98
pubmed: 18293407
Stem Cells. 2003;21(1):5-14
pubmed: 12529546
Biomaterials. 2015 Jul;56:78-85
pubmed: 25934281
J Mol Neurosci. 2019 Aug;68(4):590-602
pubmed: 31054091
Clin Cancer Res. 2005 Mar 1;11(5):1890-8
pubmed: 15756015
Oncogene. 1997 May 22;14(20):2475-83
pubmed: 9188862
Pediatrics. 2009 Aug;124(2):e218-26
pubmed: 19651565
Nat Commun. 2016 Oct 05;7:12932
pubmed: 27703142
Transl Stroke Res. 2013 Apr;4(2):158-70
pubmed: 23565129
J Cereb Blood Flow Metab. 2017 Mar;37(3):787-800
pubmed: 26984936

Auteurs

Jie Lin (J)

Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China; Department of Pharmacology, Physiology, and Neuroscience, Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA.

Yusuke Niimi (Y)

Department of Pharmacology, Physiology, and Neuroscience, Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA.

Mariano Guardia Clausi (MG)

Department of Pharmacology, Physiology, and Neuroscience, Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA.

Hur Dolunay Kanal (HD)

Department of Pharmacology, Physiology, and Neuroscience, Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA.

Steven W Levison (SW)

Department of Pharmacology, Physiology, and Neuroscience, Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA. Electronic address: levisosw@njms.rutgers.edu.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
Animals TOR Serine-Threonine Kinases Colorectal Neoplasms Colitis Mice
Animals Tail Swine Behavior, Animal Animal Husbandry

Classifications MeSH