The platelet receptor CLEC-2 blocks neutrophil mediated hepatic recovery in acetaminophen induced acute liver failure.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
22 04 2020
Historique:
received: 31 05 2018
accepted: 17 03 2020
entrez: 24 4 2020
pubmed: 24 4 2020
medline: 1 8 2020
Statut: epublish

Résumé

Acetaminophen (APAP) is the main cause of acute liver failure in the West. Specific efficacious therapies for acute liver failure (ALF) are limited and time-dependent. The mechanisms that drive irreversible acute liver failure remain poorly characterized. Here we report that the recently discovered platelet receptor CLEC-2 (C-type lectin-like receptor) perpetuates and worsens liver damage after toxic liver injury. Our data demonstrate that blocking platelet CLEC-2 signalling enhances liver recovery from acute toxic liver injuries (APAP and carbon tetrachloride) by increasing tumour necrosis factor-α (TNF-α) production which then enhances reparative hepatic neutrophil recruitment. We provide data from humans and mice demonstrating that platelet CLEC-2 influences the hepatic sterile inflammatory response and that this can be manipulated for therapeutic benefit in acute liver injury. Since CLEC-2 mediated platelet activation is independent of major haemostatic pathways, blocking this pathway represents a coagulopathy-sparing, specific and novel therapy in acute liver failure.

Identifiants

pubmed: 32321925
doi: 10.1038/s41467-020-15584-3
pii: 10.1038/s41467-020-15584-3
pmc: PMC7176690
doi:

Substances chimiques

CLEC-2 protein, mouse 0
Lectins, C-Type 0
Tumor Necrosis Factor-alpha 0
Acetaminophen 362O9ITL9D
Carbon Tetrachloride CL2T97X0V0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1939

Subventions

Organisme : British Heart Foundation
ID : CH/03/003/15571
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_PC_15048
Pays : United Kingdom
Organisme : Medical Research Council
ID : MC_PC_17169
Pays : United Kingdom
Organisme : Wellcome Trust
ID : WT100666MA
Pays : United Kingdom

Commentaires et corrections

Type : CommentIn

Références

Bernal, W. & Wendon, J. Acute liver failure. N. Engl. J. Med. 369, 2525–2534 (2013).
pubmed: 24369077 doi: 10.1056/NEJMra1208937 pmcid: 24369077
Jaeschke, H. Acetaminophen: dose-dependent drug hepatotoxicity and acute liver failure in patients. Dig. Dis. 33, 464–471 (2015).
pubmed: 26159260 pmcid: 4520394 doi: 10.1159/000374090
Bernsmeier, C., Antoniades, C. G. & Wendon, J. What’s new in acute liver failure? Intensive Care Med. 40, 1545–1548 (2014).
pubmed: 24981954 doi: 10.1007/s00134-014-3350-4 pmcid: 24981954
O’Grady, J. Timing and benefit of liver transplantation in acute liver failure. J. Hepatol. 60, 663–670 (2014).
pubmed: 24211740 doi: 10.1016/j.jhep.2013.10.024 pmcid: 24211740
Craig, D. G. et al. Staggered overdose pattern and delay to hospital presentation are associated with adverse outcomes following paracetamol-induced hepatotoxicity. Br. J. Clin. Pharm. 73, 285–294 (2012).
doi: 10.1111/j.1365-2125.2011.04067.x
Krenkel, O., Mossanen, J. C. & Tacke, F. Immune mechanisms in acetaminophen-induced acute liver failure. Hepatobiliary Surg. Nutr. 3, 331–343 (2014).
pubmed: 25568858 pmcid: 4273118
Speiser, J. L., Lee, W. M., Karvellas, C. J. & Group, U. S. A. L. F. S. Predicting outcome on admission and post-admission for acetaminophen-induced acute liver failure using classification and regression tree models. PLoS One 10, e0122929 (2015).
pubmed: 25885260 pmcid: 4401567 doi: 10.1371/journal.pone.0122929
Jaeschke, H., Xie, Y. & McGill, M. R. Acetaminophen-induced liver injury: from animal models to humans. J. Clin. Transl. Hepatol. 2, 153–161 (2014).
pubmed: 26355817 pmcid: 4521247
McGill, M. R. et al. The mechanism underlying acetaminophen-induced hepatotoxicity in humans and mice involves mitochondrial damage and nuclear DNA fragmentation. J. Clin. Invest. 122, 1574–1583 (2012).
pubmed: 22378043 pmcid: 3314460 doi: 10.1172/JCI59755
Woolbright, B. L. & Jaeschke, H. Sterile inflammation in acute liver injury: myth or mystery? Expert Rev. Gastroenterol. Hepatol. 9, 1027–1029 (2015).
pubmed: 26186639 pmcid: 4613762 doi: 10.1586/17474124.2015.1060855
Basu, S. Carbon tetrachloride-induced lipid peroxidation: eicosanoid formation and their regulation by antioxidant nutrients. Toxicology 189, 113–127 (2003).
pubmed: 12821287 doi: 10.1016/S0300-483X(03)00157-4 pmcid: 12821287
Chen, M. et al. High-mobility group box 1 exacerbates CCl(4)-induced acute liver injury in mice. Clin. Immunol. 153, 56–63 (2014).
pubmed: 24726765 doi: 10.1016/j.clim.2014.03.021 pmcid: 24726765
Brenner, C., Galluzzi, L., Kepp, O. & Kroemer, G. Decoding cell death signals in liver inflammation. J. Hepatol. 59, 583–594 (2013).
pubmed: 23567086 doi: 10.1016/j.jhep.2013.03.033 pmcid: 23567086
Kubes, P. & Mehal, W. Z. Sterile inflammation in the liver. Gastroenterology 143, 1158–1172 (2012).
pubmed: 22982943 doi: 10.1053/j.gastro.2012.09.008 pmcid: 22982943
McDonald, B. & Kubes, P. Innate immune cell trafficking and function during sterile inflammation of the liver. Gastroenterology 151, 1087–1095 (2016).
pubmed: 27725145 doi: 10.1053/j.gastro.2016.09.048 pmcid: 27725145
Slaba, I. et al. Imaging the dynamic platelet-neutrophil response in sterile liver injury and repair in mice. Hepatology 62, 1593–1605 (2015).
pubmed: 26202541 doi: 10.1002/hep.28003 pmcid: 26202541
Chauhan, A., Adams, D. H., Watson, S. P. & Lalor, P. F. Platelets: No longer bystanders in liver disease. Hepatology 64, 1774–1784 (2016).
pubmed: 26934463 pmcid: 5082495 doi: 10.1002/hep.28526
Lalor, P. F., Herbert, J., Bicknell, R. & Adams, D. H. Hepatic sinusoidal endothelium avidly binds platelets in an integrin-dependent manner, leading to platelet and endothelial activation and leukocyte recruitment. Am. J. Physiol. Gastrointest. Liver Physiol. 304, G469–G478 (2013).
pubmed: 23257923 doi: 10.1152/ajpgi.00407.2012 pmcid: 23257923
Kwon, H. J., Won, Y. S., Park, O., Feng, D. & Gao, B. Opposing effects of prednisolone treatment on T/NKT cell- and hepatotoxin-mediated hepatitis in mice. Hepatology 59, 1094–1106 (2014).
pubmed: 24115096 pmcid: 3943761 doi: 10.1002/hep.26748
Miyakawa, K. et al. Platelets and protease-activated receptor-4 contribute to acetaminophen-induced liver injury in mice. Blood 126, 1835–1843 (2015).
pubmed: 26179083 pmcid: 4600019 doi: 10.1182/blood-2014-09-598656
Hitchcock, J. R. et al. Inflammation drives thrombosis after Salmonella infection via CLEC-2 on platelets. J. Clin. Invest 125, 4429–4446 (2015).
pubmed: 26571395 pmcid: 4665792 doi: 10.1172/JCI79070
Kerrigan, A. M. et al. Podoplanin-expressing inflammatory macrophages activate murine platelets via CLEC-2. J. Thromb. Haemost. 10, 484–486 (2012).
pubmed: 22212362 pmcid: 3433653 doi: 10.1111/j.1538-7836.2011.04614.x
Rayes, J. et al. The podoplanin-CLEC-2 axis inhibits inflammation in sepsis. Nat. Commun. 8, 2239 (2017).
pubmed: 29269852 pmcid: 5740111 doi: 10.1038/s41467-017-02402-6
Navarro-Nunez, L., Langan, S. A., Nash, G. B. & Watson, S. P. The physiological and pathophysiological roles of platelet CLEC-2. Thromb. Haemost. 109, 991–998 (2013).
pubmed: 23572154 pmcid: 3693086 doi: 10.1160/TH13-01-0060
Holt, M. P., Cheng, L. & Ju, C. Identification and characterization of infiltrating macrophages in acetaminophen-induced liver injury. J. Leukoc. Biol. 84, 1410–1421 (2008).
pubmed: 18713872 pmcid: 2614594 doi: 10.1189/jlb.0308173
Finney, B. A. et al. CLEC-2 and Syk in the megakaryocytic/platelet lineage are essential for development. Blood 119, 1747–1756 (2012).
pubmed: 22186994 pmcid: 3351942 doi: 10.1182/blood-2011-09-380709
Nurden, A. T. Platelets, inflammation and tissue regeneration. Thromb. Haemost. 105(Suppl 1), S13–S33 (2011).
pubmed: 21479340 pmcid: 21479340
Ripoche, J. Blood platelets and inflammation: their relationship with liver and digestive diseases. Clin. Res Hepatol. Gastroenterol. 35, 353–357 (2011).
pubmed: 21482218 doi: 10.1016/j.clinre.2011.02.012 pmcid: 21482218
Watson, S. P., Herbert, J. M. & Pollitt, A. Y. GPVI and CLEC-2 in hemostasis and vascular integrity. J. Thromb. Haemost. 8, 1456–1467 (2010).
pubmed: 20345705 doi: 10.1111/j.1538-7836.2010.03875.x pmcid: 20345705
Lee, R. H. & Bergmeier, W. Platelet immunoreceptor tyrosine-based activation motif (ITAM) and hemITAM signaling and vascular integrity in inflammation and development. J. Thromb. Haemost. 14, 645–654 (2016).
pubmed: 26749528 doi: 10.1111/jth.13250 pmcid: 26749528
Boulaftali, Y., Hess, P. R., Kahn, M. L. & Bergmeier, W. Platelet immunoreceptor tyrosine-based activation motif (ITAM) signaling and vascular integrity. Circ. Res. 114, 1174–1184 (2014).
pubmed: 24677237 pmcid: 4000726 doi: 10.1161/CIRCRESAHA.114.301611
Boulaftali, Y. et al. Platelet ITAM signaling is critical for vascular integrity in inflammation. J. Clin. Invest 123, 908–916 (2013).
pubmed: 23348738 pmcid: 3561801
Hou, T. Z. et al. A distinct subset of podoplanin (gp38) expressing F4/80+ macrophages mediate phagocytosis and are induced following zymosan peritonitis. FEBS Lett. 584, 3955–3961 (2010).
pubmed: 20682314 doi: 10.1016/j.febslet.2010.07.053 pmcid: 20682314
Kasravi, F. B. et al. Bacterial translocation in acute liver injury induced by D-galactosamine. Hepatology 23, 97–103 (1996).
pubmed: 8550055 pmcid: 8550055
Suzuki-Inoue, K. et al. A novel Syk-dependent mechanism of platelet activation by the C-type lectin receptor CLEC-2. Blood 107, 542–549 (2006).
pubmed: 16174766 doi: 10.1182/blood-2005-05-1994 pmcid: 16174766
Smith, C. W. et al. TREM-like transcript 1: a more sensitive marker of platelet activation than P-selectin in humans and mice. Blood Adv. 2, 2072–2078 (2018).
pubmed: 30120105 pmcid: 6113608 doi: 10.1182/bloodadvances.2018017756
Amemiya, H., Kono, H. & Fujii, H. Liver regeneration is impaired in macrophage colony stimulating factor deficient mice after partial hepatectomy: the role of M-CSF-induced macrophages. J. Surg. Res. 165, 59–67 (2011).
pubmed: 20031174 doi: 10.1016/j.jss.2009.08.008
Shiratori, Y. et al. Role of macrophages in regeneration of liver. Dig. Dis. Sci. 41, 1939–1946 (1996).
pubmed: 8888704 doi: 10.1007/BF02093593
Nishiyama, K. et al. Mouse CD11b+Kupffer cells recruited from bone marrow accelerate liver regeneration after partial hepatectomy. PLoS One 10, e0136774 (2015).
pubmed: 26333171 pmcid: 4557907 doi: 10.1371/journal.pone.0136774
Akerman, P. et al. Antibodies to tumor necrosis factor-alpha inhibit liver regeneration after partial hepatectomy. Am. J. Physiol. 263, G579–G585 (1992).
pubmed: 1415718 pmcid: 1415718
Antoniades, C. G., Berry, P. A., Wendon, J. A. & Vergani, D. The importance of immune dysfunction in determining outcome in acute liver failure. J. Hepatol. 49, 845–861 (2008).
pubmed: 18801592 doi: 10.1016/j.jhep.2008.08.009 pmcid: 18801592
Josefsson, E. C., Gebhard, H. H., Stossel, T. P., Hartwig, J. H. & Hoffmeister, K. M. The macrophage alphaMbeta2 integrin alphaM lectin domain mediates the phagocytosis of chilled platelets. J. Biol. Chem. 280, 18025–18032 (2005).
pubmed: 15741160 doi: 10.1074/jbc.M501178200 pmcid: 15741160
Hoffmeister, K. M. et al. The clearance mechanism of chilled blood platelets. Cell 112, 87–97 (2003).
pubmed: 12526796 doi: 10.1016/S0092-8674(02)01253-9 pmcid: 12526796
Acton, S. E. et al. Dendritic cells control fibroblastic reticular network tension and lymph node expansion. Nature 514, 498–502 (2014).
pubmed: 25341788 pmcid: 4235005 doi: 10.1038/nature13814
Ward, L. S. C., et al. Podoplanin regulates the migration of mesenchymal stromal cells and their interaction with platelets. J. Cell Sci. 132, https://doi.org/10.1242/jcs.222067 (2019).
Scull, C. M., Hays, W. D. & Fischer, T. H. Macrophage pro-inflammatory cytokine secretion is enhanced following interaction with autologous platelets. J. Inflamm. (Lond.) 7, 53 (2010).
doi: 10.1186/1476-9255-7-53
Hottz, E. D. et al. Platelet activation and apoptosis modulate monocyte inflammatory responses in dengue. J. Immunol. 193, 1864–1872 (2014).
pubmed: 25015827 pmcid: 4137323 doi: 10.4049/jimmunol.1400091
Mantovani, A. & Garlanda, C. Platelet-macrophage partnership in innate immunity and inflammation. Nat. Immunol. 14, 768–770 (2013).
pubmed: 23867924 doi: 10.1038/ni.2666 pmcid: 23867924
Schwabe, R. F. & Brenner, D. A. Mechanisms of liver injury. I. TNF-alpha-induced liver injury: role of IKK, JNK, and ROS pathways. Am. J. Physiol. Gastrointest. Liver Physiol. 290, G583–G589 (2006).
pubmed: 16537970 doi: 10.1152/ajpgi.00422.2005 pmcid: 16537970
Blendis, L. & Dotan, I. Anti-TNF therapy for severe acute alcoholic hepatitis: What went wrong? Gastroenterology 127, 1637–1639 (2004).
pubmed: 15521033 doi: 10.1053/j.gastro.2004.09.089 pmcid: 15521033
Jaeschke, H., Williams, C. D., Ramachandran, A. & Bajt, M. L. Acetaminophen hepatotoxicity and repair: the role of sterile inflammation and innate immunity. Liver Int. 32, 8–20 (2012).
pubmed: 21745276 doi: 10.1111/j.1478-3231.2011.02501.x pmcid: 21745276
Liu, Z. X., Han, D., Gunawan, B. & Kaplowitz, N. Neutrophil depletion protects against murine acetaminophen hepatotoxicity. Hepatology 43, 1220–1230 (2006).
pubmed: 16729305 doi: 10.1002/hep.21175 pmcid: 16729305
Marques, P. E. et al. Chemokines and mitochondrial products activate neutrophils to amplify organ injury during mouse acute liver failure. Hepatology 56, 1971–1982 (2012).
pubmed: 22532075 doi: 10.1002/hep.25801 pmcid: 22532075
Jaeschke, H. & Liu, J. Neutrophil depletion protects against murine acetaminophen hepatotoxicity: another perspective. Hepatology 45, 1588–1589 (2007). author reply 1589.
pubmed: 17539019 doi: 10.1002/hep.21549 pmcid: 17539019
Cover, C. et al. Pathophysiological role of the acute inflammatory response during acetaminophen hepatotoxicity. Toxicol. Appl. Pharm. 216, 98–107 (2006).
doi: 10.1016/j.taap.2006.04.010
Hou, H. S. et al. Deficiency of interleukin-15 enhances susceptibility to acetaminophen-induced liver injury in mice. PLoS One 7, e44880 (2012).
pubmed: 23028657 pmcid: 3445599 doi: 10.1371/journal.pone.0044880
Williams, C. D., Bajt, M. L., Farhood, A. & Jaeschke, H. Acetaminophen-induced hepatic neutrophil accumulation and inflammatory liver injury in CD18-deficient mice. Liver Int. 30, 1280–1292 (2010).
pubmed: 20500806 pmcid: 4278356 doi: 10.1111/j.1478-3231.2010.02284.x
Williams, C. D. et al. Neutrophil activation during acetaminophen hepatotoxicity and repair in mice and humans. Toxicol. Appl. Pharm. 275, 122–133 (2014).
doi: 10.1016/j.taap.2014.01.004
Yang, W. et al. Neutrophils promote the development of reparative macrophages mediated by ROS to orchestrate liver repair. Nat. Commun. 10, 1076 (2019).
pubmed: 30842418 pmcid: 6403250 doi: 10.1038/s41467-019-09046-8
Jimenez Calvente, C., et al. Neutrophils contribute to spontaneous resolution of liver inflammation and fibrosis via microRNA-223. J. Clin. Invest. 130, 4091–4109(2019).
Wright, H. L., Moots, R. J., Bucknall, R. C. & Edwards, S. W. Neutrophil function in inflammation and inflammatory diseases. Rheumatol. (Oxf.) 49, 1618–1631 (2010).
doi: 10.1093/rheumatology/keq045
Wang, J. et al. Visualizing the function and fate of neutrophils in sterile injury and repair. Science 358, 111–116 (2017).
pubmed: 28983053 doi: 10.1126/science.aam9690 pmcid: 28983053
Dhanda, A. D. & Collins, P. L. Immune dysfunction in acute alcoholic hepatitis. World J. Gastroenterol. 21, 11904–11913 (2015).
pubmed: 26576079 pmcid: 4641112 doi: 10.3748/wjg.v21.i42.11904
Taylor, N. J. et al. Circulating neutrophil dysfunction in acute liver failure. Hepatology 57, 1142–1152 (2013).
pubmed: 23079896 doi: 10.1002/hep.26102 pmcid: 23079896
Irvine, K. M., Ratnasekera, I., Powell, E. E. & Hume, D. A. Causes and consequences of innate immune dysfunction in cirrhosis. Front Immunol. 10, 293 (2019).
pubmed: 30873165 pmcid: 6401613 doi: 10.3389/fimmu.2019.00293
Zhang, L. et al. Granulocyte colony-stimulating factor treatment ameliorates liver injury and improves survival in rats with D-galactosamine-induced acute liver failure. Toxicol. Lett. 204, 92–99 (2011).
pubmed: 21550386 doi: 10.1016/j.toxlet.2011.04.016 pmcid: 21550386
Moreau, R. & Rautou, P. E. G-CSF therapy for severe alcoholic hepatitis: targeting liver regeneration or neutrophil function? Am. J. Gastroenterol. 109, 1424–1426 (2014).
pubmed: 25196873 doi: 10.1038/ajg.2014.250 pmcid: 25196873
Lisman, T. Platelet-neutrophil interactions as drivers of inflammatory and thrombotic disease. Cell Tissue Res. 371, 567–576 (2018).
pubmed: 29178039 doi: 10.1007/s00441-017-2727-4 pmcid: 29178039
Zhao, X. et al. TNF signaling drives myeloid-derived suppressor cell accumulation. J. Clin. Invest. 122, 4094–4104 (2012).
pubmed: 23064360 pmcid: 3484453 doi: 10.1172/JCI64115
Zhang, H. et al. The critical role of myeloid-derived suppressor cells and FXR activation in immune-mediated liver injury. J. Autoimmun. 53, 55–66 (2014).
pubmed: 24721598 doi: 10.1016/j.jaut.2014.02.010 pmcid: 24721598
Li, S. et al. Expansion of granulocytic, myeloid-derived suppressor cells in response to ethanol-induced acute liver damage. Front Immunol. 9, 1524 (2018).
pubmed: 30072984 pmcid: 6060237 doi: 10.3389/fimmu.2018.01524
Li, P. Z., Li, J. Z., Li, M., Gong, J. P. & He, K. An efficient method to isolate and culture mouse Kupffer cells. Immunol. Lett. 158, 52–56 (2014).
pubmed: 24333337 doi: 10.1016/j.imlet.2013.12.002 pmcid: 24333337

Auteurs

Abhishek Chauhan (A)

Centre for Liver and Gastrointestinal Research, Institute of Immunology and Inflammation, and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, The Medical School, University of Birmingham, Birmingham, B15 2TT, UK. a.chauhan.1@bham.ac.uk.

Lozan Sheriff (L)

Centre for Liver and Gastrointestinal Research, Institute of Immunology and Inflammation, and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, The Medical School, University of Birmingham, Birmingham, B15 2TT, UK.

Mohammed T Hussain (MT)

Centre for Liver and Gastrointestinal Research, Institute of Immunology and Inflammation, and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, The Medical School, University of Birmingham, Birmingham, B15 2TT, UK.

Gwilym J Webb (GJ)

Centre for Liver and Gastrointestinal Research, Institute of Immunology and Inflammation, and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, The Medical School, University of Birmingham, Birmingham, B15 2TT, UK.

Daniel A Patten (DA)

Centre for Liver and Gastrointestinal Research, Institute of Immunology and Inflammation, and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, The Medical School, University of Birmingham, Birmingham, B15 2TT, UK.

Emma L Shepherd (EL)

Centre for Liver and Gastrointestinal Research, Institute of Immunology and Inflammation, and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, The Medical School, University of Birmingham, Birmingham, B15 2TT, UK.

Robert Shaw (R)

Technology Hub, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK.

Christopher J Weston (CJ)

Centre for Liver and Gastrointestinal Research, Institute of Immunology and Inflammation, and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, The Medical School, University of Birmingham, Birmingham, B15 2TT, UK.

Debashis Haldar (D)

Centre for Liver and Gastrointestinal Research, Institute of Immunology and Inflammation, and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, The Medical School, University of Birmingham, Birmingham, B15 2TT, UK.

Samuel Bourke (S)

Centre for Liver and Gastrointestinal Research, Institute of Immunology and Inflammation, and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, The Medical School, University of Birmingham, Birmingham, B15 2TT, UK.

Rajan Bhandari (R)

Centre for Liver and Gastrointestinal Research, Institute of Immunology and Inflammation, and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, The Medical School, University of Birmingham, Birmingham, B15 2TT, UK.

Stephanie Watson (S)

Institute of Cardiovascular Sciences, The Medical School, University of Birmingham, Birmingham, B15 2TT, UK.

David H Adams (DH)

Centre for Liver and Gastrointestinal Research, Institute of Immunology and Inflammation, and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, The Medical School, University of Birmingham, Birmingham, B15 2TT, UK.

Steve P Watson (SP)

Institute of Cardiovascular Sciences, The Medical School, University of Birmingham, Birmingham, B15 2TT, UK.
Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, The Midlands, Nottingham, UK.

Patricia F Lalor (PF)

Centre for Liver and Gastrointestinal Research, Institute of Immunology and Inflammation, and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, The Medical School, University of Birmingham, Birmingham, B15 2TT, UK.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH