Possibility of cancer-stem-cell-targeted radioimmunotherapy for acute myelogenous leukemia using
Animals
Antibodies, Monoclonal
/ therapeutic use
Astatine
/ therapeutic use
Humans
Iodine Radioisotopes
Leukemia, Myeloid, Acute
/ immunology
Male
Mice, Inbred BALB C
Mice, Nude
Muscles
/ pathology
Neoplastic Stem Cells
/ pathology
Organ Specificity
Radiation Dosage
Radioimmunotherapy
Receptors, CXCR4
/ immunology
Tissue Distribution
U937 Cells
Xenograft Model Antitumor Assays
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
22 04 2020
22 04 2020
Historique:
received:
23
01
2020
accepted:
02
04
2020
entrez:
24
4
2020
pubmed:
24
4
2020
medline:
1
12
2020
Statut:
epublish
Résumé
To explore stem-cell-targeted radioimmunotherapy with α-particles in acute myelogenous leukemia (AML), pharmacokinetics and dosimetry of the
Identifiants
pubmed: 32321944
doi: 10.1038/s41598-020-63557-9
pii: 10.1038/s41598-020-63557-9
pmc: PMC7176675
doi:
Substances chimiques
Antibodies, Monoclonal
0
Astatine-211
0
CXCR4 protein, human
0
Iodine Radioisotopes
0
Receptors, CXCR4
0
Iodine-125
GVO776611R
Astatine
XI595HAL7H
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
6810Références
Targeted Alpha Therapy Working Group. et al. Targeted alpha therapy, an emerging class of cancer agents: A review. JAMA Oncol. 4, 1765–1772 (2018).
doi: 10.1001/jamaoncol.2018.4044
Parker, C. et al. Alpha emitter radium-223 and survival in metastatic prostate cancer. N. Engl. J. Med. 369, 213–223 (2013).
pubmed: 23863050
doi: 10.1056/NEJMoa1213755
Kratochwil, C. et al.
pubmed: 25070685
pmcid: 4525192
doi: 10.1007/s00259-014-2857-9
Kratochwil, C. et al.
pubmed: 27390158
doi: 10.2967/jnumed.116.178673
Zalutsky, M. R. et al. Clinical experience with a particle-emitting
pubmed: 18077533
doi: 10.2967/jnumed.107.046938
Andersson, H. et al. Intraperitoneal a-particle radioimmunotherapy of ovarian cancer patients: Pharmacokinetics and dosimetry of
pubmed: 19525452
doi: 10.2967/jnumed.109.062604
Gerlinger, M. et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366, 883–892 (2012).
pubmed: 22397650
pmcid: 4878653
doi: 10.1056/NEJMoa1113205
Clarke, M. F. et al. Cancer stem cells - perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res. 66, 9339–9344 (2006).
pubmed: 16990346
doi: 10.1158/0008-5472.CAN-06-3126
Roboz, G. J. & Guzman, M. Acute myeloid leukemia stem cells: seek and destroy. Expert Rev. Hematol. 2, 663–672 (2009).
pubmed: 21082958
pmcid: 5677185
doi: 10.1586/ehm.09.53
Singh, A. & Settleman, J. EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene. 29, 4741–4751 (2010).
pubmed: 20531305
pmcid: 3176718
doi: 10.1038/onc.2010.215
Wang, M., Wang, Y. & Zhong, J. Side population cells and drug resistance in breast cancer. Mol. Med. Rep. 11, 4297–4302 (2015).
pubmed: 25647733
doi: 10.3892/mmr.2015.3291
Li, M. et al. Stem cell-like circulating tumor cells indicate poor prognosis in gastric cancer. Biomed. Res. Int. 2014, 981261 (2014).
pubmed: 24963492
pmcid: 4054962
Frank, N. Y., Schatton, T. & Frank, M. H. The therapeutic promise of the cancer stem cell concept. J. Clin. Invest. 120, 41–50 (2010).
pubmed: 20051635
pmcid: 2798700
doi: 10.1172/JCI41004
Guo, F. et al. CXCL12/XCR4: a symbiotic bridge linking cancer cells and their stromal neighbors in oncogenic communication networks. Oncogene. 35, 816–826 (2016).
pubmed: 25961926
doi: 10.1038/onc.2015.139
Wester, H. J. et al. Disclosing the CXCR4 expression in lymphoproliferative diseases by targeted molecular imaging. Theranostics. 5, 618–630 (2015).
pubmed: 25825601
pmcid: 4377730
doi: 10.7150/thno.11251
Schottelius, M. et al. [
pubmed: 28744319
pmcid: 5525741
doi: 10.7150/thno.19119
Kircher, M. et al. CXCR4-directed theranostics in oncology and inflammation. Ann. Nucl. Med. 32, 503–511 (2018).
pubmed: 30105558
pmcid: 6182637
doi: 10.1007/s12149-018-1290-8
Vag, T. et al. First experience with chemokine receptor CXCR4-targeted PET imaging of patients with solid cancers. J. Nucl. Med. 57, 741–746 (2016).
pubmed: 26769866
doi: 10.2967/jnumed.115.161034
Fang, H. Y. et al. CXCR4 is a potential target for diagnostic PET/CT imaging in Barrett’s dysplasia and esophageal adenocarcinoma. Clin. Cancer Res. 24, 1048–1061 (2018).
pubmed: 29208671
doi: 10.1158/1078-0432.CCR-17-1756
Tavor, S. et al. CXCR4 regulates migration and development of human acute myelogenous leukemia stem cells in transplanted NOD/SCID mice. Cancer Res. 64, 2817–2824 (2004).
pubmed: 15087398
doi: 10.1158/0008-5472.CAN-03-3693
Spoo, A. C., Lübbert, M., Wierda, W. G. & Burger, J. A. CXCR4 is a prognostic marker in acute myelogenous leukemia. Blood. 109, 786–791 (2007).
doi: 10.1182/blood-2006-05-024844
Hadley, S. W., Wilbur, D. S., Gray, M. A. & Atcher, R. W. Astatine-211 labeling of an antimelanoma antibody and its Fab fragment using N-succinimidyl p-[
doi: 10.1021/bc00009a006
Teze, D. et al. Targeted radionuclide therapy with astatine-211: Oxidative dehalogenation of astatobenzoate conjugates. Sci. Rep. 7, 2579 (2017).
pubmed: 28566709
pmcid: 5451414
doi: 10.1038/s41598-017-02614-2
Larson, S. M., Carrasquillo, J. A., Cheung, N.-K. V. & Press, O. Radioimmunotherapy of human tumours. Nat. Rev. Cancer. 15, 347–360 (2015).
pubmed: 25998714
pmcid: 4798425
doi: 10.1038/nrc3925
Miller, B. W. Radiation Imagers for quantitative, single-particle digital autoradiography of alpha- and beta-particle emitters. Semin. Nucl. Med. 48, 367–376 (2018).
pubmed: 29852946
doi: 10.1053/j.semnuclmed.2018.02.008
Peled, A. et al. The high-affinity CXCR4 antagonist BKT140 is safe and induces a robust mobilization of human CD34
pubmed: 24246358
doi: 10.1158/1078-0432.CCR-13-1302
Sison, E. A. et al. POL5551, a novel and potent CXCR4 antagonist, enhances sensitivity to chemotherapy in pediatric ALL. Oncotarget. 6, 30902–30918 (2015).
pubmed: 26360610
pmcid: 4741576
doi: 10.18632/oncotarget.5094
Duda, D. G. et al. CXCL12 (SDF1 alpha)-CXCR4/CXCR7 pathway inhibition: an emerging sensitizer for anticancer therapies? Clin. Cancer Res. 17, 2074–2080 (2011).
pubmed: 21349998
pmcid: 3079023
doi: 10.1158/1078-0432.CCR-10-2636
Broussas, M. et al. A new anti-CXCR4 antibody that blocks the CXCR4/SDF-1 axis and mobilizes effector cells. Mol. Cancer Ther. 15, 1890–1899 (2016).
pubmed: 27297868
doi: 10.1158/1535-7163.MCT-16-0041
Kuhne, M. R. et al. BMS-936564/MDX-1338: a fully human anti-CXCR4 antibody induces apoptosis in vitro and shows antitumor activity in vivo in hematologic malignancies. Clin. Cancer Res. 19, 357–366 (2013).
pubmed: 23213054
doi: 10.1158/1078-0432.CCR-12-2333
Sehedic, D. et al. Locoregional confinement and major clinical benefit of
pubmed: 29158842
pmcid: 5695146
doi: 10.7150/thno.19403
Herrmann, K. et al. First-in-human experience of CXCR4-directed endoradiotherapy with
pubmed: 26564323
doi: 10.2967/jnumed.115.167361
Lapa, C. et al. Feasibility of CXCR4-directed radioligand therapy in advanced diffuse large B-cell lymphoma. J. Nucl. Med. 60, 60–64 (2019).
pubmed: 29777009
doi: 10.2967/jnumed.118.210997
Washiyama, K. et al. At-211 production using the CYPRIS MP-30. J. Med. Imaging Radiat. Sci. 50(Supplement), S42 (2019).
doi: 10.1016/j.jmir.2019.03.128
Lindegren, S., Bäck, T. & Jensen, H. J. Dry-distillation of astatine-211 from irradiated bismuth targets: a time-saving procedure with high recovery yields. Appl. Radiat. Isot. 55, 157–160 (2001).
pubmed: 11393754
doi: 10.1016/S0969-8043(01)00044-6
Miyamoto, R. et al. Enhanced target-specific accumulation of radiolabeled antibodies by conjugating arginine-rich peptides as anchoring molecules. Bioconjug. Chem. 21, 2031–2037 (2010).
pubmed: 20973494
doi: 10.1021/bc100259q
Zalutsky, M. R. & Narula, A. S. Astatination of proteins using an N-succinimidyl tri-n-butylstannyl benzoate intermediate. Int. J. Rad. Appl. Instrum. A. 39, 227–232 (1988).
pubmed: 2836342
doi: 10.1016/0883-2889(88)90176-1
Tolmachev, V., Orlova, A. & Andersson, K. Methods for radiolabelling of monoclonal antibodies. Methods. Mol. Biol. 1060, 309–330 (2014).
pubmed: 24037848
doi: 10.1007/978-1-62703-586-6_16
Reist, C. J., Foulon, C. F., Alston, K., Bigner, D. D. & Zalutsky, M. R. Astatine-211 labeling of internalizing anti-EGFRvIII monoclonal antibody using N-succinimidyl 5-[
pubmed: 10382844
doi: 10.1016/S0969-8051(98)00120-6
Stabin, M. G. & Siegel, J. A. RADAR dose estimate report: A compendium of radiopharmaceutical dose estimates based on OLINDA/EXM version 2.0. J. Nucl. Med. 59, 154–160 (2018).
pubmed: 28887400
doi: 10.2967/jnumed.117.196261
Sgouros, G. et al. MIRD Pamphlet No. 22 (abridged): radiobiology and dosimetry of α-particle emitters for targeted radionuclide therapy. J. Nucl. Med. 51, 311–328 (2010).
pubmed: 20080889
pmcid: 5680544
doi: 10.2967/jnumed.108.058651
Spetz, J., Rudqvist, N. & Forssell-Aronsson, E. Biodistribution and dosimetry of free
pubmed: 23789969
pmcid: 3793652
doi: 10.1089/cbr.2013.1483
Kirschner, A. S., Ice, R. D. & Beierwaltes, W. H. Radiation dosimetry of
Sgouros, G. Bone marrow dosimetry for radioimmunotherapy: theoretical considerations. J. Nucl. Med. 34, 689–694 (1993).
pubmed: 8455089