Possibility of cancer-stem-cell-targeted radioimmunotherapy for acute myelogenous leukemia using


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
22 04 2020
Historique:
received: 23 01 2020
accepted: 02 04 2020
entrez: 24 4 2020
pubmed: 24 4 2020
medline: 1 12 2020
Statut: epublish

Résumé

To explore stem-cell-targeted radioimmunotherapy with α-particles in acute myelogenous leukemia (AML), pharmacokinetics and dosimetry of the

Identifiants

pubmed: 32321944
doi: 10.1038/s41598-020-63557-9
pii: 10.1038/s41598-020-63557-9
pmc: PMC7176675
doi:

Substances chimiques

Antibodies, Monoclonal 0
Astatine-211 0
CXCR4 protein, human 0
Iodine Radioisotopes 0
Receptors, CXCR4 0
Iodine-125 GVO776611R
Astatine XI595HAL7H

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

6810

Références

Targeted Alpha Therapy Working Group. et al. Targeted alpha therapy, an emerging class of cancer agents: A review. JAMA Oncol. 4, 1765–1772 (2018).
doi: 10.1001/jamaoncol.2018.4044
Parker, C. et al. Alpha emitter radium-223 and survival in metastatic prostate cancer. N. Engl. J. Med. 369, 213–223 (2013).
pubmed: 23863050 doi: 10.1056/NEJMoa1213755
Kratochwil, C. et al.
pubmed: 25070685 pmcid: 4525192 doi: 10.1007/s00259-014-2857-9
Kratochwil, C. et al.
pubmed: 27390158 doi: 10.2967/jnumed.116.178673
Zalutsky, M. R. et al. Clinical experience with a particle-emitting
pubmed: 18077533 doi: 10.2967/jnumed.107.046938
Andersson, H. et al. Intraperitoneal a-particle radioimmunotherapy of ovarian cancer patients: Pharmacokinetics and dosimetry of
pubmed: 19525452 doi: 10.2967/jnumed.109.062604
Gerlinger, M. et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366, 883–892 (2012).
pubmed: 22397650 pmcid: 4878653 doi: 10.1056/NEJMoa1113205
Clarke, M. F. et al. Cancer stem cells - perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res. 66, 9339–9344 (2006).
pubmed: 16990346 doi: 10.1158/0008-5472.CAN-06-3126
Roboz, G. J. & Guzman, M. Acute myeloid leukemia stem cells: seek and destroy. Expert Rev. Hematol. 2, 663–672 (2009).
pubmed: 21082958 pmcid: 5677185 doi: 10.1586/ehm.09.53
Singh, A. & Settleman, J. EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene. 29, 4741–4751 (2010).
pubmed: 20531305 pmcid: 3176718 doi: 10.1038/onc.2010.215
Wang, M., Wang, Y. & Zhong, J. Side population cells and drug resistance in breast cancer. Mol. Med. Rep. 11, 4297–4302 (2015).
pubmed: 25647733 doi: 10.3892/mmr.2015.3291
Li, M. et al. Stem cell-like circulating tumor cells indicate poor prognosis in gastric cancer. Biomed. Res. Int. 2014, 981261 (2014).
pubmed: 24963492 pmcid: 4054962
Frank, N. Y., Schatton, T. & Frank, M. H. The therapeutic promise of the cancer stem cell concept. J. Clin. Invest. 120, 41–50 (2010).
pubmed: 20051635 pmcid: 2798700 doi: 10.1172/JCI41004
Guo, F. et al. CXCL12/XCR4: a symbiotic bridge linking cancer cells and their stromal neighbors in oncogenic communication networks. Oncogene. 35, 816–826 (2016).
pubmed: 25961926 doi: 10.1038/onc.2015.139
Wester, H. J. et al. Disclosing the CXCR4 expression in lymphoproliferative diseases by targeted molecular imaging. Theranostics. 5, 618–630 (2015).
pubmed: 25825601 pmcid: 4377730 doi: 10.7150/thno.11251
Schottelius, M. et al. [
pubmed: 28744319 pmcid: 5525741 doi: 10.7150/thno.19119
Kircher, M. et al. CXCR4-directed theranostics in oncology and inflammation. Ann. Nucl. Med. 32, 503–511 (2018).
pubmed: 30105558 pmcid: 6182637 doi: 10.1007/s12149-018-1290-8
Vag, T. et al. First experience with chemokine receptor CXCR4-targeted PET imaging of patients with solid cancers. J. Nucl. Med. 57, 741–746 (2016).
pubmed: 26769866 doi: 10.2967/jnumed.115.161034
Fang, H. Y. et al. CXCR4 is a potential target for diagnostic PET/CT imaging in Barrett’s dysplasia and esophageal adenocarcinoma. Clin. Cancer Res. 24, 1048–1061 (2018).
pubmed: 29208671 doi: 10.1158/1078-0432.CCR-17-1756
Tavor, S. et al. CXCR4 regulates migration and development of human acute myelogenous leukemia stem cells in transplanted NOD/SCID mice. Cancer Res. 64, 2817–2824 (2004).
pubmed: 15087398 doi: 10.1158/0008-5472.CAN-03-3693
Spoo, A. C., Lübbert, M., Wierda, W. G. & Burger, J. A. CXCR4 is a prognostic marker in acute myelogenous leukemia. Blood. 109, 786–791 (2007).
doi: 10.1182/blood-2006-05-024844
Hadley, S. W., Wilbur, D. S., Gray, M. A. & Atcher, R. W. Astatine-211 labeling of an antimelanoma antibody and its Fab fragment using N-succinimidyl p-[
doi: 10.1021/bc00009a006
Teze, D. et al. Targeted radionuclide therapy with astatine-211: Oxidative dehalogenation of astatobenzoate conjugates. Sci. Rep. 7, 2579 (2017).
pubmed: 28566709 pmcid: 5451414 doi: 10.1038/s41598-017-02614-2
Larson, S. M., Carrasquillo, J. A., Cheung, N.-K. V. & Press, O. Radioimmunotherapy of human tumours. Nat. Rev. Cancer. 15, 347–360 (2015).
pubmed: 25998714 pmcid: 4798425 doi: 10.1038/nrc3925
Miller, B. W. Radiation Imagers for quantitative, single-particle digital autoradiography of alpha- and beta-particle emitters. Semin. Nucl. Med. 48, 367–376 (2018).
pubmed: 29852946 doi: 10.1053/j.semnuclmed.2018.02.008
Peled, A. et al. The high-affinity CXCR4 antagonist BKT140 is safe and induces a robust mobilization of human CD34
pubmed: 24246358 doi: 10.1158/1078-0432.CCR-13-1302
Sison, E. A. et al. POL5551, a novel and potent CXCR4 antagonist, enhances sensitivity to chemotherapy in pediatric ALL. Oncotarget. 6, 30902–30918 (2015).
pubmed: 26360610 pmcid: 4741576 doi: 10.18632/oncotarget.5094
Duda, D. G. et al. CXCL12 (SDF1 alpha)-CXCR4/CXCR7 pathway inhibition: an emerging sensitizer for anticancer therapies? Clin. Cancer Res. 17, 2074–2080 (2011).
pubmed: 21349998 pmcid: 3079023 doi: 10.1158/1078-0432.CCR-10-2636
Broussas, M. et al. A new anti-CXCR4 antibody that blocks the CXCR4/SDF-1 axis and mobilizes effector cells. Mol. Cancer Ther. 15, 1890–1899 (2016).
pubmed: 27297868 doi: 10.1158/1535-7163.MCT-16-0041
Kuhne, M. R. et al. BMS-936564/MDX-1338: a fully human anti-CXCR4 antibody induces apoptosis in vitro and shows antitumor activity in vivo in hematologic malignancies. Clin. Cancer Res. 19, 357–366 (2013).
pubmed: 23213054 doi: 10.1158/1078-0432.CCR-12-2333
Sehedic, D. et al. Locoregional confinement and major clinical benefit of
pubmed: 29158842 pmcid: 5695146 doi: 10.7150/thno.19403
Herrmann, K. et al. First-in-human experience of CXCR4-directed endoradiotherapy with
pubmed: 26564323 doi: 10.2967/jnumed.115.167361
Lapa, C. et al. Feasibility of CXCR4-directed radioligand therapy in advanced diffuse large B-cell lymphoma. J. Nucl. Med. 60, 60–64 (2019).
pubmed: 29777009 doi: 10.2967/jnumed.118.210997
Washiyama, K. et al. At-211 production using the CYPRIS MP-30. J. Med. Imaging Radiat. Sci. 50(Supplement), S42 (2019).
doi: 10.1016/j.jmir.2019.03.128
Lindegren, S., Bäck, T. & Jensen, H. J. Dry-distillation of astatine-211 from irradiated bismuth targets: a time-saving procedure with high recovery yields. Appl. Radiat. Isot. 55, 157–160 (2001).
pubmed: 11393754 doi: 10.1016/S0969-8043(01)00044-6
Miyamoto, R. et al. Enhanced target-specific accumulation of radiolabeled antibodies by conjugating arginine-rich peptides as anchoring molecules. Bioconjug. Chem. 21, 2031–2037 (2010).
pubmed: 20973494 doi: 10.1021/bc100259q
Zalutsky, M. R. & Narula, A. S. Astatination of proteins using an N-succinimidyl tri-n-butylstannyl benzoate intermediate. Int. J. Rad. Appl. Instrum. A. 39, 227–232 (1988).
pubmed: 2836342 doi: 10.1016/0883-2889(88)90176-1
Tolmachev, V., Orlova, A. & Andersson, K. Methods for radiolabelling of monoclonal antibodies. Methods. Mol. Biol. 1060, 309–330 (2014).
pubmed: 24037848 doi: 10.1007/978-1-62703-586-6_16
Reist, C. J., Foulon, C. F., Alston, K., Bigner, D. D. & Zalutsky, M. R. Astatine-211 labeling of internalizing anti-EGFRvIII monoclonal antibody using N-succinimidyl 5-[
pubmed: 10382844 doi: 10.1016/S0969-8051(98)00120-6
Stabin, M. G. & Siegel, J. A. RADAR dose estimate report: A compendium of radiopharmaceutical dose estimates based on OLINDA/EXM version 2.0. J. Nucl. Med. 59, 154–160 (2018).
pubmed: 28887400 doi: 10.2967/jnumed.117.196261
Sgouros, G. et al. MIRD Pamphlet No. 22 (abridged): radiobiology and dosimetry of α-particle emitters for targeted radionuclide therapy. J. Nucl. Med. 51, 311–328 (2010).
pubmed: 20080889 pmcid: 5680544 doi: 10.2967/jnumed.108.058651
Spetz, J., Rudqvist, N. & Forssell-Aronsson, E. Biodistribution and dosimetry of free
pubmed: 23789969 pmcid: 3793652 doi: 10.1089/cbr.2013.1483
Kirschner, A. S., Ice, R. D. & Beierwaltes, W. H. Radiation dosimetry of
Sgouros, G. Bone marrow dosimetry for radioimmunotherapy: theoretical considerations. J. Nucl. Med. 34, 689–694 (1993).
pubmed: 8455089

Auteurs

Noboru Oriuchi (N)

Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University, Fukushima, 960-1295, Japan. oriuchi@fmu.ac.jp.
Department of Nuclear Medicine, Fukushima Medical University, Fukushima, 960-1295, Japan. oriuchi@fmu.ac.jp.

Miho Aoki (M)

Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University, Fukushima, 960-1295, Japan.

Naoyuki Ukon (N)

Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University, Fukushima, 960-1295, Japan.

Kohshin Washiyama (K)

Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University, Fukushima, 960-1295, Japan.

Chengbo Tan (C)

Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University, Fukushima, 960-1295, Japan.

Saki Shimoyama (S)

Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University, Fukushima, 960-1295, Japan.

Ken-Ichi Nishijima (KI)

Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University, Fukushima, 960-1295, Japan.

Kazuhiro Takahashi (K)

Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University, Fukushima, 960-1295, Japan.

Hiroshi Ito (H)

Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University, Fukushima, 960-1295, Japan.
Department of Radiology, Fukushima Medical University, Fukushima, 960-1295, Japan.

Takayuki Ikezoe (T)

Department of Hematology, Fukushima Medical University, Fukushima, 960-1295, Japan.

Songji Zhao (S)

Advanced Clinical Research Center, Fukushima Global Medical Science Center, Fukushima Medical University, Fukushima, 960-1295, Japan.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH