Exploring the operating factors controlling Kouleothrix (type 1851), the dominant filamentous bacterial population, in a full-scale A2O plant.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
22 04 2020
Historique:
received: 25 09 2019
accepted: 21 03 2020
entrez: 24 4 2020
pubmed: 24 4 2020
medline: 1 12 2020
Statut: epublish

Résumé

This study reveals that the abundance of the filament Kouleothrix (Eikelboom type 1851) correlated positively with poor settleability of activated sludge biomass in a Japanese full-scale nutrient removal wastewater treatment plant sampled over a one-year period. 16S rRNA amplicon sequence data confirmed that Kouleothrix was the dominant filament in the plant, with a relative abundance of 3.06% positively correlated with sludge volume index (SVI) (R = 0.691). Moreover, Kouleothrix (type 1851) appeared to form interfloc bridges, typical of bulking sludge, regardless of season. Together with earlier studies that indicated the responsibility of Kouleothrix (type 1851) on bulking events, these data suggest that their high relative abundances alone may be responsible for sludge bulking. 16S rRNA qPCR data for this filament showed changes in its relative abundance correlated with changes in several operational parameters, including mixed liquor temperature, sludge retention time, and suspended solids concentration, and it may be that manipulating these may help control Kouleothrix bulking.

Identifiants

pubmed: 32321952
doi: 10.1038/s41598-020-63534-2
pii: 10.1038/s41598-020-63534-2
pmc: PMC7176654
doi:

Substances chimiques

RNA, Ribosomal, 16S 0
Sewage 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

6809

Références

Wanner, J. & Jobbágy, A. Activated sludge solids separation in Activated sludge – 100 years and counting (eds. Jenkins, D. & Wanner, J.) 171–194 (IWA Publishing, 2014).
Jenkins, D., Richard, M. & Daigger, G. Manual on the causes and control of activated sludge bulking and other solids separation problems (IWA Publishing, 2004).
Tandoi, V., Majone, M. & Rossetti, S. Bulking and foaming control methods in Activated Sludge Separation Problems Theory, Control Measures, Practical Experiences (eds. Rossetti, S., Tandoi, V. & Wanner, J.) 99–138 (IWA Publishing, 2017).
Kumari, S. S., Marrengane, Z. & Bux, F. Application of quantitative RT-PCR to determine the distribution of Microthrix parvicella in full-scale activated sludge treatment systems. Appl Microbiol. Biotechnol. 83, 1135–1141, https://doi.org/10.1007/s00253-009-2013-9 (2009).
doi: 10.1007/s00253-009-2013-9 pubmed: 19415267
Fan, N. et al. Factors affecting the growth of Microthrix parvicella: Batch tests using bulking sludge as seed sludge. Sci. Total. Environ. 609, 1192–1199, https://doi.org/10.1016/j.scitotenv.2017.07.261 (2017).
doi: 10.1016/j.scitotenv.2017.07.261 pubmed: 28787793
Fan, N. et al. Control strategy for filamentous sludge bulking: Bench-scale test and full-scale application. Chemosphere 210, 709–716, https://doi.org/10.1016/j.chemosphere.2018.07.028 (2018).
doi: 10.1016/j.chemosphere.2018.07.028 pubmed: 30036818
Vervaeren, H. et al. Quantification of an Eikelboom type 021N bulking event with fluorescence in situ hybridization and real-time PCR. Appl. Microbiol. Biotechnol. 68, 695–704, https://doi.org/10.1007/s00253-005-1963-9 (2005).
doi: 10.1007/s00253-005-1963-9 pubmed: 15818476
Asvapathanagul, P. et al. Identification and quantification of Thiothrix eikelboomii using qPCR for early detection of bulking incidents in a full-scale water reclamation plant. Appl. Microbiol. Biotechnol. 99, 4045–4057, https://doi.org/10.1007/s00253-014-6230-5 (2015).
doi: 10.1007/s00253-014-6230-5 pubmed: 25567510
Suenaga, H., Liu, R., Shiramasa, Y. & Kanagawa, T. Novel approach to quantitative detection of specific rRNA in a microbial community, using catalytic DNA. Appl. Environ. Microbiol. 71, 4879–4884, https://doi.org/10.1128/AEM.71.8.4879-4884.2005 (2005).
doi: 10.1128/AEM.71.8.4879-4884.2005 pubmed: 16085888 pmcid: 1183326
Cao, C. & Lou, I. Analysis of environmental variables on population dynamic change of Haliscomenobacter hydrossis, the bulking causative filament in Macau wastewater treatment plant. Desalin. Water Treat. 57, 7182–7195, https://doi.org/10.1080/19443994.2015.1014857 (2016).
doi: 10.1080/19443994.2015.1014857
Nittami, T. et al. Quantification of Chloroflexi Eikelboom morphotype 1851 for prediction and control of bulking events in municipal activated sludge plants in Japan. Appl. Microbiol. Biotechnol. 101, 3861–3869, https://doi.org/10.1007/s00253-016-8077-4 (2017).
doi: 10.1007/s00253-016-8077-4 pubmed: 28093622
Nittami, T. et al. Investigation of prospective factors that control Kouleothrix (Type 1851) filamentous bacterial abundance and their correlation with sludge settleability in full-scale wastewater treatment plants. Process Saf. Environ. 124, 137–142, https://doi.org/10.1016/j.psep.2019.02.003 (2019).
doi: 10.1016/j.psep.2019.02.003
Beer, M. J. et al. Phylogeny of the filamentous bacterium Eikelboom type 1851, and design and application of a 16S rRNA targeted oligonucleotide probe for its fluorescence in situ identification in activated sludge. FEMS Microbiol. Lett. 207, 179–183, https://doi.org/10.1111/j.1574-6968.2002.tb11048.x (2002).
doi: 10.1111/j.1574-6968.2002.tb11048.x pubmed: 11958937
Daims, H., Stoecker, K. & Wagner, M. Fluorescence in situ hybridization for the detection of prokaryotes in Molecular microbial ecology (eds. Osborn, A. M. & Smith, C. J.) 213–240 (Taylor & Francis, 2005).
Bolyen, E. et al. QIIME 2: Reproducible, interactive, scalable, and extensible microbiome data science. PeerJ. https://doi.org/10.7287/peerj.preprints.27295v1 (2018).
McIlroy, S. J. et al. MiDAS: the field guide to the microbes of activated sludge. Database 2015, bav062, https://doi.org/10.1093/database/bav062 (2015).
doi: 10.1093/database/bav062 pubmed: 26120139 pmcid: 4483311
Amann, R. I. et al. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl. Environ. Microbiol. 56, 1919–25 (1990).
doi: 10.1128/AEM.56.6.1919-1925.1990
Daims, H., Brühl, A., Amann, R., Schleifer, K. H. & Wagner, M. The domain-specific probe EUB338 is insufficient for the detection of all Bacteria: development and evaluation of a more comprehensive probe set. Syst. Appl. Microbiol. 22, 434–44, https://doi.org/10.1016/S0723-2020(99)80053-8 (1999).
doi: 10.1016/S0723-2020(99)80053-8 pubmed: 10553296
Kragelund, C., Thomsen, T. R., Mielczarek, A. T. & Nielsen, P. H. Eikelboom’s morphotype 0803 in activated sludge belongs to the genus Caldilinea in the phylum. Chloroflexi. FEMS Microbiol. Ecol. 76, 451–62, https://doi.org/10.1111/j.1574-6941.2011.01065.x (2011).
doi: 10.1111/j.1574-6941.2011.01065.x pubmed: 21299573
Roller, C., Wagner, M., Amann, R., Ludwig, W. & Schleifer, K. H. In situ probing of gram-positive bacteria with high DNA G + C content using 23S rRNA-targeted oligonucleotides. Microbiology 140, 2849–58, https://doi.org/10.1099/00221287-140-10-2849 (1994).
doi: 10.1099/00221287-140-10-2849 pubmed: 8000548
Nielsen, P. H., Kragelund, C., Seviour, R. J. & Nielsen, J. L. Identity and ecophysiology of filamentous bacteria in activated sludge. FEMS Microbiol. Rev. 33, 969–98, https://doi.org/10.1111/j.1574-6976.2009.00186.x (2009).
doi: 10.1111/j.1574-6976.2009.00186.x pubmed: 19622067
Seviour, R. J. The current taxonomic status of the filamentous bacteria found in activated sludge plants in Microbial ecology of activated sludge (eds. Seviour, R. J. & Nielsen, P. H.) 169–190 (IWA Publishing, 2010).
Guo, F. & Zhang, T. Profiling bulking and foaming bacteria in activated sludge by high throughput sequencing. Water Res 46, 2772–2782, https://doi.org/10.1016/j.watres.2012.02.039 (2012).
doi: 10.1016/j.watres.2012.02.039 pubmed: 22406202
Nierychlo, M. et al. The ecology of the Chloroflexi in full-scale activated sludge wastewater treatment plants. FEMS Microbiol. Ecol. 95, fiy228, https://doi.org/10.1093/femsec/fiy228 (2018).
doi: 10.1093/femsec/fiy228
Wanner, J. Activated sludge separation problems in Activated Sludge Separation Problems Theory, Control Measures, Practical Experiences (eds. Rossetti, S., Tandoi, V. & Wanner, J.) 53–66 (IWA Publishing, 2017).
Wágner, D. S., Ramin, E., Szabo, P., Dechesne, A. & Plósz, B. G. Microthrix parvicella abundance associates with activated sludge settling velocity and rheilogy- Quantifying and modelling filamentous bulking. Water Res. 78, 121–132, https://doi.org/10.1016/j.watres.2015.04.003 (2015).
doi: 10.1016/j.watres.2015.04.003 pubmed: 25935367
Kohno, T., Sei, K. & Mori, K. Characterization of type 1851 organism isolated from activated sludge samples. Water Sci. Technol. 46, 111–114 (2002).
doi: 10.2166/wst.2002.0464
Knoop, S. & Kunst, S. Influence of temperature and sludge loading on activated sludge settling, especially on Microthrix parvicella. Water Sci. Technol. 37, 27–35, https://doi.org/10.2166/wst.1998.0573 (1998).
doi: 10.2166/wst.1998.0573
Rossetti, S., Tomei, M. C., Levantesi, C., Ramadori, R. & Tandoi, V. “Microthrix parvicella”: a new approach for kinetic and physiological characterization. Water Sci. Technol. 46, 65–72 (2002).
doi: 10.2166/wst.2002.0458
Slijkhuis, H. Microthrix parvicella, a filamentous bacterium isolated from activated sludge: cultivation in a chemically defined medium. Appl. Environ. Microbiol. 46, 832–839 (1983).
doi: 10.1128/AEM.46.4.832-839.1983
Mielczarek, A. T., Kragelund, C., Eriksen, P. S. & Nielsen, P. H. Population dynamics of filamentous bacteria in Danish wastewater treatment plants with nutrient removal. Water Res. 46, 3781–3795, https://doi.org/10.1016/j.watres.2012.04.009 (2012).
doi: 10.1016/j.watres.2012.04.009 pubmed: 22608099
Kragelund, C. et al. Identity, abundance and ecophysiology of filamentous Chloroflexi species present in activated sludge treatment plants. FEMS Microbiol. Ecol. 59, 671–682, https://doi.org/10.1111/j.1574-6941.2006.00251.x (2007).
doi: 10.1111/j.1574-6941.2006.00251.x pubmed: 17381520
Richard, M. G. Activated sludge microbiology (water pollution control federation, 1989).
Eikelboom, D.H. Process control of activated sludge plants by microscopic investigation (IWA Publishing, 2000).
Wanner, J. & Grau, P. Identification of filamentous organisms from activated sludge: A compromise between wishes, needs and possibilities. Water Res. 2, 883–891, https://doi.org/10.1016/0043-1354(89)90013-4 (1989).
doi: 10.1016/0043-1354(89)90013-4
Khunjar, W. O., Pitt, P. A., Bott, C. B. & Chandran, K. Nitrogen in Activated sludge – 100 years and counting (eds. Jenkins, D. & Wanner, J.) 77–91 (IWA Publishing, 2014).
Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336, https://doi.org/10.1038/nmeth.f.303 (2010).
doi: 10.1038/nmeth.f.303 pubmed: 3156573 pmcid: 3156573
Albertsen, M., Karst, S. M., Ziegler, A. S., Kirkegaard, R. H. & Nielsen, P. H. Back to basics – the influence of DNA extraction and primer choice on phylogenetic analysis of activated sludge communities. PLoS One 10, e0132783, doi:10.137/journal.pone.0132783 (2015).
doi: 10.1371/journal.pone.0132783
Karst, S. M. et al. Retrieval of a million high-quality, full-length microbial 16S and 18S rRNA gene sequences without primer bias. Nature Biotechnol. 36, 190–195, https://doi.org/10.1038/nbt.4045 (2018).
doi: 10.1038/nbt.4045
Liao, J., Lou, I. & de los Reyes, F. L. III Relationship of species-specific filament levels to filamentous bulking in activated sludge. Appl. Environ. Microbiol. 70, 2420–2428, https://doi.org/10.1128/AEM.70.4.2420-2428.2004 (2004).
doi: 10.1128/AEM.70.4.2420-2428.2004 pubmed: 15066840 pmcid: 383088

Auteurs

Tadashi Nittami (T)

Division of Materials Science and Chemical Engineering, Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, 240-8501, Japan. nittami@ynu.ac.jp.

Risa Kasakura (R)

Department of Chemistry, Chemical Engineering and Life Science, College of Engineering Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, 240-8501, Japan.

Toshimasa Kobayashi (T)

Department of Chemistry, Chemical Engineering and Life Science, College of Engineering Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, 240-8501, Japan.

Kota Suzuki (K)

Department of Chemistry, Chemical Engineering and Life Science, College of Engineering Science, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, 240-8501, Japan.

Yusuke Koshiba (Y)

Division of Materials Science and Chemical Engineering, Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, 240-8501, Japan.

Junji Fukuda (J)

Division of Materials Science and Chemical Engineering, Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, 240-8501, Japan.

Minoru Takeda (M)

Division of Materials Science and Chemical Engineering, Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama, 240-8501, Japan.

Tomohiro Tobino (T)

Department of Urban Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.

Futoshi Kurisu (F)

Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
Research Center for Water Environment Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.

Daniel Rice (D)

Department of Physiology, Anatomy, and Microbiology, La Trobe University, Bundoora, VIC3086, Australia.

Steve Petrovski (S)

Department of Physiology, Anatomy, and Microbiology, La Trobe University, Bundoora, VIC3086, Australia.

Robert J Seviour (RJ)

Department of Physiology, Anatomy, and Microbiology, La Trobe University, Bundoora, VIC3086, Australia.

Articles similaires

Humans Meals Time Factors Female Adult

Vancomycin-associated DRESS demonstrates delay in AST abnormalities.

Ahmed Hussein, Kateri L Schoettinger, Jourdan Hydol-Smith et al.
1.00
Humans Drug Hypersensitivity Syndrome Vancomycin Female Male
Humans Male Female Aged Middle Aged
Coal Metagenome Phylogeny Bacteria Genome, Bacterial

Classifications MeSH