Deletion of Topoisomerase 1 in excitatory neurons causes genomic instability and early onset neurodegeneration.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
23 04 2020
Historique:
received: 01 07 2019
accepted: 28 03 2020
entrez: 25 4 2020
pubmed: 25 4 2020
medline: 1 8 2020
Statut: epublish

Résumé

Topoisomerase 1 (TOP1) relieves torsional stress in DNA during transcription and facilitates the expression of long (>100 kb) genes, many of which are important for neuronal functions. To evaluate how loss of Top1 affected neurons in vivo, we conditionally deleted (cKO) Top1 in postmitotic excitatory neurons in the mouse cerebral cortex and hippocampus. Top1 cKO neurons develop properly, but then show biased transcriptional downregulation of long genes, signs of DNA damage, neuroinflammation, increased poly(ADP-ribose) polymerase-1 (PARP1) activity, single-cell somatic mutations, and ultimately degeneration. Supplementation of nicotinamide adenine dinucleotide (NAD

Identifiants

pubmed: 32327659
doi: 10.1038/s41467-020-15794-9
pii: 10.1038/s41467-020-15794-9
pmc: PMC7181881
doi:

Substances chimiques

Pyridinium Compounds 0
nicotinamide-beta-riboside 0I8H2M0L7N
NAD 0U46U6E8UK
Niacinamide 25X51I8RD4
Parp1 protein, mouse EC 2.4.2.30
Poly (ADP-Ribose) Polymerase-1 EC 2.4.2.30
DNA Topoisomerases, Type I EC 5.99.1.2

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

1962

Subventions

Organisme : NIEHS NIH HHS
ID : P30 ES010126
Pays : United States
Organisme : NIEHS NIH HHS
ID : R35 ES028366
Pays : United States
Organisme : NINDS NIH HHS
ID : P30 NS045892
Pays : United States
Organisme : NICHD NIH HHS
ID : U54 HD079124
Pays : United States
Organisme : NIEHS NIH HHS
ID : DP1 ES024088
Pays : United States
Organisme : NIA NIH HHS
ID : R56 AG058663
Pays : United States
Organisme : NIEHS NIH HHS
ID : R56 ES028236
Pays : United States

Références

Lu, T. et al. Gene regulation and DNA damage in the ageing human brain. Nature 429, 883–891 (2004).
pubmed: 15190254 doi: 10.1038/nature02661
Lodato, M. A. et al. Somatic mutation in single human neurons tracks developmental and transcriptional history. Science 350, 94–98 (2015).
pubmed: 26430121 pmcid: 4664477 doi: 10.1126/science.aab1785
Madabhushi, R. et al. Activity-induced DNA breaks govern the expression of neuronal early-response genes. Cell 161, 1592–1605 (2015).
pubmed: 26052046 pmcid: 4886855 doi: 10.1016/j.cell.2015.05.032
Suberbielle, E. et al. Physiologic brain activity causes DNA double-strand breaks in neurons, with exacerbation by amyloid-β. Nat. Neurosci. 16, 613–621 (2013).
pubmed: 23525040 pmcid: 3637871 doi: 10.1038/nn.3356
McConnell, M. J. et al. Mosaic copy number variation in human neurons. Science 342, 632–637 (2013).
pubmed: 24179226 pmcid: 24179226 doi: 10.1126/science.1243472
McConnell, M. J. et al. Intersection of diverse neuronal genomes and neuropsychiatric disease: The Brain Somatic Mosaicism Network. Science 356, https://doi.org/10.1126/science.aal1641 (2017).
Rohrback, S. et al. Submegabase copy number variations arise during cerebral cortical neurogenesis as revealed by single-cell whole-genome sequencing. Proc. Natl Acad. Sci. USA 115, 10804–10809 (2018).
pubmed: 30262650 doi: 10.1073/pnas.1812702115
Bushman, D. M. et al. Genomic mosaicism with increased amyloid precursor protein (APP) gene copy number in single neurons from sporadic Alzheimer’s disease brains. Elife 4, https://doi.org/10.7554/eLife.05116 (2015).
Lee, M. H. et al. Somatic APP gene recombination in Alzheimer’s disease and normal neurons. Nature 563, 639–645 (2018).
pubmed: 30464338 pmcid: 6391999 doi: 10.1038/s41586-018-0718-6
Lodato, M. A. et al. Aging and neurodegeneration are associated with increased mutations in single human neurons. Science 359, 555–559 (2018).
doi: 10.1126/science.aao4426
Mokretar, K. et al. Somatic copy number gains of alpha-synuclein (SNCA) in Parkinson’s disease and multiple system atrophy brains. Brain 141, 2419–2431 (2018).
pubmed: 29917054 doi: 10.1093/brain/awy157
Sala Frigerio, C. et al. On the identification of low allele frequency mosaic mutations in the brains of Alzheimer’s disease patients. Alzheimers Dement. 11, 1265–1276 (2015).
pubmed: 25937274 doi: 10.1016/j.jalz.2015.02.007
Leija-Salazar, M., Piette, C. & Proukakis, C. Review: somatic mutations in neurodegeneration. Neuropathol. Appl. Neurobiol. 44, 267–285 (2018).
pubmed: 29369391 doi: 10.1111/nan.12465
Chow, H. M. & Herrup, K. Genomic integrity and the ageing brain. Nat. Rev. Neurosci. 16, 672–684 (2015).
pubmed: 26462757 doi: 10.1038/nrn4020
McKinnon, P. J. Maintaining genome stability in the nervous system. Nat. Neurosci. 16, 1523–1529 (2013).
pubmed: 24165679 pmcid: 24165679 doi: 10.1038/nn.3537
Naumann, M. et al. Impaired DNA damage response signaling by FUS-NLS mutations leads to neurodegeneration and FUS aggregate formation. Nat. Commun. 9, 335 (2018).
pubmed: 29362359 pmcid: 5780468 doi: 10.1038/s41467-017-02299-1
Hoch, N. C. et al. XRCC1 mutation is associated with PARP1 hyperactivation and cerebellar ataxia. Nature 541, 87–91 (2016).
pubmed: 28002403 pmcid: 5218588 doi: 10.1038/nature20790
Hou, Y. et al. NAD+ supplementation normalizes key Alzheimer’s features and DNA damage responses in a new AD mouse model with introduced DNA repair deficiency. Proc. Natl Acad. Sci. USA 115, E1876–E1885 (2018).
pubmed: 29432159 doi: 10.1073/pnas.1718819115
Kam, T. I. et al. Poly(ADP-ribose) drives pathologic a-synuclein neurodegeneration in Parkinson’s disease. Science 362, eaat8407 (2018).
pubmed: 30385548 pmcid: 6431793 doi: 10.1126/science.aat8407
Martire, S., Mosca, L. & d’Erme, M. PARP-1 involvement in neurodegeneration: a focus on Alzheimer’s and Parkinson’s diseases. Mech. Ageing Dev. 146–148, 53–64, (2015).
pubmed: 25881554 doi: 10.1016/j.mad.2015.04.001
Baranello, L., Kouzine, F. & Levens, D. DNA topoisomerases beyond the standard role. Transcription 4, 232–237 (2013).
Pommier, Y., Sun, Y., Huang, S. N. & Nitiss, J. L. Roles of eukaryotic topoisomerases in transcription, replication and genomic stability. Nat. Rev. Mol. Cell. Biol. 17, 703–721 (2016).
pubmed: 27649880 doi: 10.1038/nrm.2016.111
King, I. F. et al. Topoisomerases facilitate transcription of long genes linked to autism. Nature 501, 58–62, https://doi.org/10.1038/nature12504 (2013).
doi: 10.1038/nature12504 pubmed: 23995680 pmcid: 3767287
Mabb, A. M. et al. Topoisomerase 1 regulates gene expression in neurons through cleavage complex-dependent and -independent mechanisms. PLoS ONE 11, e0156439 (2016).
pubmed: 27231886 pmcid: 4883752 doi: 10.1371/journal.pone.0156439
Zylka, M. J., Simon, J. M. & Philpot, B. D. Gene length matters in neurons. Neuron 86, 353–355 (2015).
pubmed: 25905808 pmcid: 4584405 doi: 10.1016/j.neuron.2015.03.059
Mabb, A. M. et al. Topoisomerase 1 inhibition reversibly impairs synaptic function. Proc. Natl Acad. Sci. USA 111, 17290–17295 (2014).
pubmed: 25404338 doi: 10.1073/pnas.1413204111
Loo, L. et al. Single-cell transcriptomic analysis of mouse neocortical development. Nat. Commun. 10, 134 (2019).
pubmed: 30635555 pmcid: 6329831 doi: 10.1038/s41467-018-08079-9
Goebbels, S. et al. Genetic targeting of principal neurons in neocortex and hippocampus of NEX-Cre mice. Genesis 44, 611–621 (2006).
pubmed: 17146780 doi: 10.1002/dvg.20256
Kwan, K. Y., Sestan, N. & Anton, E. S. Transcriptional co-regulation of neuronal migration and laminar identity in the neocortex. Development 139, 1535–1546 (2012).
pubmed: 22492350 pmcid: 3317962 doi: 10.1242/dev.069963
Arlotta, P. et al. Neuronal subtype-specific genes that control corticospinal motor neuron development in vivo. Neuron 45, 207–221 (2005).
doi: 10.1016/j.neuron.2004.12.036
Ransohoff, R. M. How neuroinflammation contributes to neurodegeneration. Science 353, 777–783 (2016).
pubmed: 27540165 doi: 10.1126/science.aag2590
Anholt, R. R., Pedersen, P. L., De Souza, E. B. & Snyder, S. H. The peripheral-type benzodiazepine receptor. Localization to the mitochondrial outer membrane. J. Biol. Chem. 261, 576–583 (1986).
pubmed: 3001071
Kuhlmann, A. C. & Guilarte, T. R. Cellular and subcellular localization of peripheral benzodiazepine receptors after trimethyltin neurotoxicity. J. Neurochem. 74, 1694–1704 (2000).
pubmed: 10737628 doi: 10.1046/j.1471-4159.2000.0741694.x
Liu, G. J. et al. The 18 kDa translocator protein, microglia and neuroinflammation. Brain Pathol. 24, 631–653 (2014).
pubmed: 25345894 doi: 10.1111/bpa.12196
Fookes, C. J. R. et al. Synthesis and biological evaluation of substituted [
pubmed: 18557607 doi: 10.1021/jm7014556
Xing, L. et al. Layer specific and general requirements for ERK/MAPK signaling in the developing neocortex. eLife 5, https://doi.org/10.7554/elife.11123 (2016).
Christman, M. F., Dietrich, F. S. & Fink, G. R. Mitotic recombination in the rDNA of S. cerevisiae is suppressed by the combined action of DNA topoisomerases I and II. Cell 55, 413–425 (1988).
pubmed: 2902925 doi: 10.1016/0092-8674(88)90027-X
Manzo, S. G. et al. DNA Topoisomerase I differentially modulates R-loops across the human genome. Genome Biol. 19, https://doi.org/10.1186/s13059-018-1478-1 (2018).
Trigueros, S. & Roca, J. Failure to relax negative supercoiling of DNA is a primary cause of mitotic hyper-recombination in topoisomerase-deficient yeast cells. J. Biol. Chem. 277, 37,207–37,211 (2002).
doi: 10.1074/jbc.M206663200
Tuduri, S. et al. Topoisomerase I suppresses genomic instability by preventing interference between replication and transcription. Nat. Cell Biol. 11, 1315–1324 (2009).
pubmed: 19838172 pmcid: 2912930 doi: 10.1038/ncb1984
Yang, J. L. et al. Oxidative DNA damage is concurrently repaired by base excision repair (BER) and apyrimidinic endonuclease 1 (APE1)-initiated nonhomologous end joining (NHEJ) in cortical neurons. Neuropathol. Appl. Neurobiol. https://doi.org/10.1111/nan.12584 (2019).
Chronister, W. D. et al. Neurons with complex karyotypes are rare in aged human neocortex. Cell Rep. 26, 825–835 and 827 (2019).
pubmed: 30673605 pmcid: 6942668 doi: 10.1016/j.celrep.2018.12.107
Long, A. N. et al. Effect of nicotinamide mononucleotide on brain mitochondrial respiratory deficits in an Alzheimer’s disease-relevant murine model. BMC Neurol. 15, 19 (2015).
pubmed: 25884176 pmcid: 4358858 doi: 10.1186/s12883-015-0272-x
Jacks, T. et al. Tumor spectrum analysis in p53-mutant mice. Curr. Biol. 4, 1–7 (1994).
pubmed: 7922305 doi: 10.1016/S0960-9822(00)00002-6
Katyal, S. et al. Aberrant topoisomerase-1 DNA lesions are pathogenic in neurodegenerative genome instability syndromes. Nat. Neurosci. 17, 813–821 (2014).
pubmed: 24793032 pmcid: 4074009 doi: 10.1038/nn.3715
Sordet, O. et al. Ataxia telangiectasia mutated activation by transcription- and topoisomerase I-induced DNA double-strand breaks. EMBO Rep. 10, 887–893 (2009).
pubmed: 19557000 pmcid: 2726680 doi: 10.1038/embor.2009.97
Cristini, A. et al. Dual processing of R-loops and topoisomerase I induces transcription-dependent DNA double-strand breaks. Cell Rep. 28, 3167–3181 and 3166 (2019).
pubmed: 31533039 doi: 10.1016/j.celrep.2019.08.041
Brochu, J., Vlachos-Breton, E., Sutherland, S., Martel, M. & Drolet, M. Topoisomerases I and III inhibit R-loop formation to prevent unregulated replication in the chromosomal Ter region of Escherichia coli. PLoS Genet. 14, e1007668 (2018).
pubmed: 30222737 pmcid: 6160223 doi: 10.1371/journal.pgen.1007668
El Hage, A., French, S. L., Beyer, A. L. & Tollervey, D. Loss of Topoisomerase I leads to R-loop-mediated transcriptional blocks during ribosomal RNA synthesis. Genes Dev. 24, 1546–1558 (2010).
pubmed: 20634320 pmcid: 2904944 doi: 10.1101/gad.573310
Fang, E. F. et al. NAD+ replenishment improves lifespan and healthspan in ataxia telangiectasia models via mitophagy and DNA repair. Cell Metab. 24, 566–581 (2016).
pubmed: 27732836 pmcid: 5777858 doi: 10.1016/j.cmet.2016.09.004
Mills, K. F. et al. Long-term administration of nicotinamide mononucleotide mitigates age-associated physiological decline in mice. Cell Metab. 24, 795–806 (2016).
pubmed: 28068222 pmcid: 5668137 doi: 10.1016/j.cmet.2016.09.013
Wang, X., Hu, X., Yang, Y., Takata, T. & Sakurai, T. Nicotinamide mononucleotide protects against β-amyloid oligomer-induced cognitive impairment and neuronal death. Brain Res. 1643, 1–9 (2016).
pubmed: 27130898 doi: 10.1016/j.brainres.2016.04.060
Valenzuela, M. T. et al. PARP-1 modifies the effectiveness of p53-mediated DNA damage response. Oncogene 21, 1108–1116 (2002).
pubmed: 11850828 doi: 10.1038/sj.onc.1205169
Vaughn, A. E. & Deshmukh, M. Essential postmitochondrial function of p53 uncovered in DNA damage-induced apoptosis in neurons. Cell Death Differ. 14, 973–981 (2007).
pubmed: 17218959 doi: 10.1038/sj.cdd.4402084
Wieler, S., Gagné, J. P., Vaziri, H., Poirier, G. G. & Benchimol, S. Poly(ADP-ribose) polymerase-1 is a positive regulator of the p53-mediated G1 arrest response following ionizing radiation. J. Biol. Chem. 278, 18914–18921 (2003).
pubmed: 12642583 doi: 10.1074/jbc.M211641200
Rossi, F. et al. Specific phosphorylation of SR proteins by mammalian DNA topoisomerase I. Nature 381, 80–82 (1996).
pubmed: 8609994 doi: 10.1038/381080a0
Goodfellow, S. J. & Zomerdijk, J. C. Basic mechanisms in RNA polymerase I transcription of the ribosomal RNA genes. Subcell. Biochem. 61, 211–236 (2013).
pubmed: 23150253 doi: 10.1007/978-94-007-4525-4_10
Fu, H., Hardy, J. & Duff, K. E. Selective vulnerability in neurodegenerative diseases. Nat. Neurosci. 21, 1350–1358 (2018).
pubmed: 30250262 pmcid: 6360529 doi: 10.1038/s41593-018-0221-2
Wang, X. & Michaelis, E. K. Selective neuronal vulnerability to oxidative stress in the brain. Front. Aging Neurosci. 2, 12 (2010).
pubmed: 20552050 pmcid: 2874397
Perego, M. G. L., Taiana, M., Bresolin, N., Comi, G. P. & Corti, S. R-loops in motor neuron diseases. Mol. Neurobiol. 56, 2579–2589 (2019).
pubmed: 30047099 doi: 10.1007/s12035-018-1246-y
Kuhnast, B. et al. [
pubmed: 22104496 doi: 10.1016/j.apradiso.2011.10.015
Macosko, E. Z. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202–1214 (2015).
pubmed: 26000488 pmcid: 4481139 doi: 10.1016/j.cell.2015.05.002
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
doi: 10.1093/bioinformatics/bts635
Shekhar, K. et al. Comprehensive classification of retinal bipolar neurons by single-cell transcriptomics. Cell 166, 1308–1323 and 1330 (2016).
pubmed: 5003425 pmcid: 5003425 doi: 10.1016/j.cell.2016.07.054
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
Wierman, M. B., Burbulis, I. E., Chronister, W. D., Bekiranov, S. & McConnell, M. J. in Genomic Mosaicism in Neurons and Other Cell Types Vol. 131 (ed. Gage, F. & Frade, J.) (Humana Press, New York, 2017).
Burbulis, I. E. et al. Improved molecular karyotyping in glioblastoma. Mutat. Res. 811, 16–26 (2018).
pubmed: 30055482 doi: 10.1016/j.mrfmmm.2018.06.002
Garvin, T. et al. Interactive analysis and assessment of single-cell copy-number variations. Nat. Methods 12, 1058–1060 (2015).

Auteurs

Giulia Fragola (G)

Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.

Angela M Mabb (AM)

Neuroscience Institute, Georgia State University, Atlanta, GA, 30303, USA.

Bonnie Taylor-Blake (B)

Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.

Jesse K Niehaus (JK)

UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.

William D Chronister (WD)

Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.

Hanqian Mao (H)

Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.

Jeremy M Simon (JM)

UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
Carolina Institute for Developmental Disabilities, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA.

Hong Yuan (H)

Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
Biomedical Imaging Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.

Zibo Li (Z)

Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
Biomedical Imaging Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.

Michael J McConnell (MJ)

Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.
Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.
Center for Brain Immunology and Glia, University of Virginia School of Medicine, Charlottesville, VA, 22908, USA.
Center for Public Health Genomics, University of Virginia, School of Medicine, Charlottesville, VA, 22908, USA.

Mark J Zylka (MJ)

Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA. zylka@med.unc.edu.
UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA. zylka@med.unc.edu.

Articles similaires

Robotic Surgical Procedures Animals Humans Telemedicine Models, Animal

Odour generalisation and detection dog training.

Lyn Caldicott, Thomas W Pike, Helen E Zulch et al.
1.00
Animals Odorants Dogs Generalization, Psychological Smell
C-Reactive Protein Humans Biomarkers Inflammation
Humans Immune Checkpoint Inhibitors Lung Neoplasms Prognosis Inflammation

Classifications MeSH