Deletion of Topoisomerase 1 in excitatory neurons causes genomic instability and early onset neurodegeneration.
Animals
Apoptosis
/ drug effects
Cerebral Cortex
/ enzymology
DNA Damage
DNA Topoisomerases, Type I
/ deficiency
Genomic Instability
Hippocampus
/ enzymology
Inflammation
Mice
Mice, Knockout
Mortality, Premature
Motor Activity
Mutation
NAD
/ administration & dosage
Neurodegenerative Diseases
/ drug therapy
Neurons
/ drug effects
Niacinamide
/ administration & dosage
Poly (ADP-Ribose) Polymerase-1
/ metabolism
Pyridinium Compounds
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
23 04 2020
23 04 2020
Historique:
received:
01
07
2019
accepted:
28
03
2020
entrez:
25
4
2020
pubmed:
25
4
2020
medline:
1
8
2020
Statut:
epublish
Résumé
Topoisomerase 1 (TOP1) relieves torsional stress in DNA during transcription and facilitates the expression of long (>100 kb) genes, many of which are important for neuronal functions. To evaluate how loss of Top1 affected neurons in vivo, we conditionally deleted (cKO) Top1 in postmitotic excitatory neurons in the mouse cerebral cortex and hippocampus. Top1 cKO neurons develop properly, but then show biased transcriptional downregulation of long genes, signs of DNA damage, neuroinflammation, increased poly(ADP-ribose) polymerase-1 (PARP1) activity, single-cell somatic mutations, and ultimately degeneration. Supplementation of nicotinamide adenine dinucleotide (NAD
Identifiants
pubmed: 32327659
doi: 10.1038/s41467-020-15794-9
pii: 10.1038/s41467-020-15794-9
pmc: PMC7181881
doi:
Substances chimiques
Pyridinium Compounds
0
nicotinamide-beta-riboside
0I8H2M0L7N
NAD
0U46U6E8UK
Niacinamide
25X51I8RD4
Parp1 protein, mouse
EC 2.4.2.30
Poly (ADP-Ribose) Polymerase-1
EC 2.4.2.30
DNA Topoisomerases, Type I
EC 5.99.1.2
Types de publication
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1962Subventions
Organisme : NIEHS NIH HHS
ID : P30 ES010126
Pays : United States
Organisme : NIEHS NIH HHS
ID : R35 ES028366
Pays : United States
Organisme : NINDS NIH HHS
ID : P30 NS045892
Pays : United States
Organisme : NICHD NIH HHS
ID : U54 HD079124
Pays : United States
Organisme : NIEHS NIH HHS
ID : DP1 ES024088
Pays : United States
Organisme : NIA NIH HHS
ID : R56 AG058663
Pays : United States
Organisme : NIEHS NIH HHS
ID : R56 ES028236
Pays : United States
Références
Lu, T. et al. Gene regulation and DNA damage in the ageing human brain. Nature 429, 883–891 (2004).
pubmed: 15190254
doi: 10.1038/nature02661
Lodato, M. A. et al. Somatic mutation in single human neurons tracks developmental and transcriptional history. Science 350, 94–98 (2015).
pubmed: 26430121
pmcid: 4664477
doi: 10.1126/science.aab1785
Madabhushi, R. et al. Activity-induced DNA breaks govern the expression of neuronal early-response genes. Cell 161, 1592–1605 (2015).
pubmed: 26052046
pmcid: 4886855
doi: 10.1016/j.cell.2015.05.032
Suberbielle, E. et al. Physiologic brain activity causes DNA double-strand breaks in neurons, with exacerbation by amyloid-β. Nat. Neurosci. 16, 613–621 (2013).
pubmed: 23525040
pmcid: 3637871
doi: 10.1038/nn.3356
McConnell, M. J. et al. Mosaic copy number variation in human neurons. Science 342, 632–637 (2013).
pubmed: 24179226
pmcid: 24179226
doi: 10.1126/science.1243472
McConnell, M. J. et al. Intersection of diverse neuronal genomes and neuropsychiatric disease: The Brain Somatic Mosaicism Network. Science 356, https://doi.org/10.1126/science.aal1641 (2017).
Rohrback, S. et al. Submegabase copy number variations arise during cerebral cortical neurogenesis as revealed by single-cell whole-genome sequencing. Proc. Natl Acad. Sci. USA 115, 10804–10809 (2018).
pubmed: 30262650
doi: 10.1073/pnas.1812702115
Bushman, D. M. et al. Genomic mosaicism with increased amyloid precursor protein (APP) gene copy number in single neurons from sporadic Alzheimer’s disease brains. Elife 4, https://doi.org/10.7554/eLife.05116 (2015).
Lee, M. H. et al. Somatic APP gene recombination in Alzheimer’s disease and normal neurons. Nature 563, 639–645 (2018).
pubmed: 30464338
pmcid: 6391999
doi: 10.1038/s41586-018-0718-6
Lodato, M. A. et al. Aging and neurodegeneration are associated with increased mutations in single human neurons. Science 359, 555–559 (2018).
doi: 10.1126/science.aao4426
Mokretar, K. et al. Somatic copy number gains of alpha-synuclein (SNCA) in Parkinson’s disease and multiple system atrophy brains. Brain 141, 2419–2431 (2018).
pubmed: 29917054
doi: 10.1093/brain/awy157
Sala Frigerio, C. et al. On the identification of low allele frequency mosaic mutations in the brains of Alzheimer’s disease patients. Alzheimers Dement. 11, 1265–1276 (2015).
pubmed: 25937274
doi: 10.1016/j.jalz.2015.02.007
Leija-Salazar, M., Piette, C. & Proukakis, C. Review: somatic mutations in neurodegeneration. Neuropathol. Appl. Neurobiol. 44, 267–285 (2018).
pubmed: 29369391
doi: 10.1111/nan.12465
Chow, H. M. & Herrup, K. Genomic integrity and the ageing brain. Nat. Rev. Neurosci. 16, 672–684 (2015).
pubmed: 26462757
doi: 10.1038/nrn4020
McKinnon, P. J. Maintaining genome stability in the nervous system. Nat. Neurosci. 16, 1523–1529 (2013).
pubmed: 24165679
pmcid: 24165679
doi: 10.1038/nn.3537
Naumann, M. et al. Impaired DNA damage response signaling by FUS-NLS mutations leads to neurodegeneration and FUS aggregate formation. Nat. Commun. 9, 335 (2018).
pubmed: 29362359
pmcid: 5780468
doi: 10.1038/s41467-017-02299-1
Hoch, N. C. et al. XRCC1 mutation is associated with PARP1 hyperactivation and cerebellar ataxia. Nature 541, 87–91 (2016).
pubmed: 28002403
pmcid: 5218588
doi: 10.1038/nature20790
Hou, Y. et al. NAD+ supplementation normalizes key Alzheimer’s features and DNA damage responses in a new AD mouse model with introduced DNA repair deficiency. Proc. Natl Acad. Sci. USA 115, E1876–E1885 (2018).
pubmed: 29432159
doi: 10.1073/pnas.1718819115
Kam, T. I. et al. Poly(ADP-ribose) drives pathologic a-synuclein neurodegeneration in Parkinson’s disease. Science 362, eaat8407 (2018).
pubmed: 30385548
pmcid: 6431793
doi: 10.1126/science.aat8407
Martire, S., Mosca, L. & d’Erme, M. PARP-1 involvement in neurodegeneration: a focus on Alzheimer’s and Parkinson’s diseases. Mech. Ageing Dev. 146–148, 53–64, (2015).
pubmed: 25881554
doi: 10.1016/j.mad.2015.04.001
Baranello, L., Kouzine, F. & Levens, D. DNA topoisomerases beyond the standard role. Transcription 4, 232–237 (2013).
Pommier, Y., Sun, Y., Huang, S. N. & Nitiss, J. L. Roles of eukaryotic topoisomerases in transcription, replication and genomic stability. Nat. Rev. Mol. Cell. Biol. 17, 703–721 (2016).
pubmed: 27649880
doi: 10.1038/nrm.2016.111
King, I. F. et al. Topoisomerases facilitate transcription of long genes linked to autism. Nature 501, 58–62, https://doi.org/10.1038/nature12504 (2013).
doi: 10.1038/nature12504
pubmed: 23995680
pmcid: 3767287
Mabb, A. M. et al. Topoisomerase 1 regulates gene expression in neurons through cleavage complex-dependent and -independent mechanisms. PLoS ONE 11, e0156439 (2016).
pubmed: 27231886
pmcid: 4883752
doi: 10.1371/journal.pone.0156439
Zylka, M. J., Simon, J. M. & Philpot, B. D. Gene length matters in neurons. Neuron 86, 353–355 (2015).
pubmed: 25905808
pmcid: 4584405
doi: 10.1016/j.neuron.2015.03.059
Mabb, A. M. et al. Topoisomerase 1 inhibition reversibly impairs synaptic function. Proc. Natl Acad. Sci. USA 111, 17290–17295 (2014).
pubmed: 25404338
doi: 10.1073/pnas.1413204111
Loo, L. et al. Single-cell transcriptomic analysis of mouse neocortical development. Nat. Commun. 10, 134 (2019).
pubmed: 30635555
pmcid: 6329831
doi: 10.1038/s41467-018-08079-9
Goebbels, S. et al. Genetic targeting of principal neurons in neocortex and hippocampus of NEX-Cre mice. Genesis 44, 611–621 (2006).
pubmed: 17146780
doi: 10.1002/dvg.20256
Kwan, K. Y., Sestan, N. & Anton, E. S. Transcriptional co-regulation of neuronal migration and laminar identity in the neocortex. Development 139, 1535–1546 (2012).
pubmed: 22492350
pmcid: 3317962
doi: 10.1242/dev.069963
Arlotta, P. et al. Neuronal subtype-specific genes that control corticospinal motor neuron development in vivo. Neuron 45, 207–221 (2005).
doi: 10.1016/j.neuron.2004.12.036
Ransohoff, R. M. How neuroinflammation contributes to neurodegeneration. Science 353, 777–783 (2016).
pubmed: 27540165
doi: 10.1126/science.aag2590
Anholt, R. R., Pedersen, P. L., De Souza, E. B. & Snyder, S. H. The peripheral-type benzodiazepine receptor. Localization to the mitochondrial outer membrane. J. Biol. Chem. 261, 576–583 (1986).
pubmed: 3001071
Kuhlmann, A. C. & Guilarte, T. R. Cellular and subcellular localization of peripheral benzodiazepine receptors after trimethyltin neurotoxicity. J. Neurochem. 74, 1694–1704 (2000).
pubmed: 10737628
doi: 10.1046/j.1471-4159.2000.0741694.x
Liu, G. J. et al. The 18 kDa translocator protein, microglia and neuroinflammation. Brain Pathol. 24, 631–653 (2014).
pubmed: 25345894
doi: 10.1111/bpa.12196
Fookes, C. J. R. et al. Synthesis and biological evaluation of substituted [
pubmed: 18557607
doi: 10.1021/jm7014556
Xing, L. et al. Layer specific and general requirements for ERK/MAPK signaling in the developing neocortex. eLife 5, https://doi.org/10.7554/elife.11123 (2016).
Christman, M. F., Dietrich, F. S. & Fink, G. R. Mitotic recombination in the rDNA of S. cerevisiae is suppressed by the combined action of DNA topoisomerases I and II. Cell 55, 413–425 (1988).
pubmed: 2902925
doi: 10.1016/0092-8674(88)90027-X
Manzo, S. G. et al. DNA Topoisomerase I differentially modulates R-loops across the human genome. Genome Biol. 19, https://doi.org/10.1186/s13059-018-1478-1 (2018).
Trigueros, S. & Roca, J. Failure to relax negative supercoiling of DNA is a primary cause of mitotic hyper-recombination in topoisomerase-deficient yeast cells. J. Biol. Chem. 277, 37,207–37,211 (2002).
doi: 10.1074/jbc.M206663200
Tuduri, S. et al. Topoisomerase I suppresses genomic instability by preventing interference between replication and transcription. Nat. Cell Biol. 11, 1315–1324 (2009).
pubmed: 19838172
pmcid: 2912930
doi: 10.1038/ncb1984
Yang, J. L. et al. Oxidative DNA damage is concurrently repaired by base excision repair (BER) and apyrimidinic endonuclease 1 (APE1)-initiated nonhomologous end joining (NHEJ) in cortical neurons. Neuropathol. Appl. Neurobiol. https://doi.org/10.1111/nan.12584 (2019).
Chronister, W. D. et al. Neurons with complex karyotypes are rare in aged human neocortex. Cell Rep. 26, 825–835 and 827 (2019).
pubmed: 30673605
pmcid: 6942668
doi: 10.1016/j.celrep.2018.12.107
Long, A. N. et al. Effect of nicotinamide mononucleotide on brain mitochondrial respiratory deficits in an Alzheimer’s disease-relevant murine model. BMC Neurol. 15, 19 (2015).
pubmed: 25884176
pmcid: 4358858
doi: 10.1186/s12883-015-0272-x
Jacks, T. et al. Tumor spectrum analysis in p53-mutant mice. Curr. Biol. 4, 1–7 (1994).
pubmed: 7922305
doi: 10.1016/S0960-9822(00)00002-6
Katyal, S. et al. Aberrant topoisomerase-1 DNA lesions are pathogenic in neurodegenerative genome instability syndromes. Nat. Neurosci. 17, 813–821 (2014).
pubmed: 24793032
pmcid: 4074009
doi: 10.1038/nn.3715
Sordet, O. et al. Ataxia telangiectasia mutated activation by transcription- and topoisomerase I-induced DNA double-strand breaks. EMBO Rep. 10, 887–893 (2009).
pubmed: 19557000
pmcid: 2726680
doi: 10.1038/embor.2009.97
Cristini, A. et al. Dual processing of R-loops and topoisomerase I induces transcription-dependent DNA double-strand breaks. Cell Rep. 28, 3167–3181 and 3166 (2019).
pubmed: 31533039
doi: 10.1016/j.celrep.2019.08.041
Brochu, J., Vlachos-Breton, E., Sutherland, S., Martel, M. & Drolet, M. Topoisomerases I and III inhibit R-loop formation to prevent unregulated replication in the chromosomal Ter region of Escherichia coli. PLoS Genet. 14, e1007668 (2018).
pubmed: 30222737
pmcid: 6160223
doi: 10.1371/journal.pgen.1007668
El Hage, A., French, S. L., Beyer, A. L. & Tollervey, D. Loss of Topoisomerase I leads to R-loop-mediated transcriptional blocks during ribosomal RNA synthesis. Genes Dev. 24, 1546–1558 (2010).
pubmed: 20634320
pmcid: 2904944
doi: 10.1101/gad.573310
Fang, E. F. et al. NAD+ replenishment improves lifespan and healthspan in ataxia telangiectasia models via mitophagy and DNA repair. Cell Metab. 24, 566–581 (2016).
pubmed: 27732836
pmcid: 5777858
doi: 10.1016/j.cmet.2016.09.004
Mills, K. F. et al. Long-term administration of nicotinamide mononucleotide mitigates age-associated physiological decline in mice. Cell Metab. 24, 795–806 (2016).
pubmed: 28068222
pmcid: 5668137
doi: 10.1016/j.cmet.2016.09.013
Wang, X., Hu, X., Yang, Y., Takata, T. & Sakurai, T. Nicotinamide mononucleotide protects against β-amyloid oligomer-induced cognitive impairment and neuronal death. Brain Res. 1643, 1–9 (2016).
pubmed: 27130898
doi: 10.1016/j.brainres.2016.04.060
Valenzuela, M. T. et al. PARP-1 modifies the effectiveness of p53-mediated DNA damage response. Oncogene 21, 1108–1116 (2002).
pubmed: 11850828
doi: 10.1038/sj.onc.1205169
Vaughn, A. E. & Deshmukh, M. Essential postmitochondrial function of p53 uncovered in DNA damage-induced apoptosis in neurons. Cell Death Differ. 14, 973–981 (2007).
pubmed: 17218959
doi: 10.1038/sj.cdd.4402084
Wieler, S., Gagné, J. P., Vaziri, H., Poirier, G. G. & Benchimol, S. Poly(ADP-ribose) polymerase-1 is a positive regulator of the p53-mediated G1 arrest response following ionizing radiation. J. Biol. Chem. 278, 18914–18921 (2003).
pubmed: 12642583
doi: 10.1074/jbc.M211641200
Rossi, F. et al. Specific phosphorylation of SR proteins by mammalian DNA topoisomerase I. Nature 381, 80–82 (1996).
pubmed: 8609994
doi: 10.1038/381080a0
Goodfellow, S. J. & Zomerdijk, J. C. Basic mechanisms in RNA polymerase I transcription of the ribosomal RNA genes. Subcell. Biochem. 61, 211–236 (2013).
pubmed: 23150253
doi: 10.1007/978-94-007-4525-4_10
Fu, H., Hardy, J. & Duff, K. E. Selective vulnerability in neurodegenerative diseases. Nat. Neurosci. 21, 1350–1358 (2018).
pubmed: 30250262
pmcid: 6360529
doi: 10.1038/s41593-018-0221-2
Wang, X. & Michaelis, E. K. Selective neuronal vulnerability to oxidative stress in the brain. Front. Aging Neurosci. 2, 12 (2010).
pubmed: 20552050
pmcid: 2874397
Perego, M. G. L., Taiana, M., Bresolin, N., Comi, G. P. & Corti, S. R-loops in motor neuron diseases. Mol. Neurobiol. 56, 2579–2589 (2019).
pubmed: 30047099
doi: 10.1007/s12035-018-1246-y
Kuhnast, B. et al. [
pubmed: 22104496
doi: 10.1016/j.apradiso.2011.10.015
Macosko, E. Z. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161, 1202–1214 (2015).
pubmed: 26000488
pmcid: 4481139
doi: 10.1016/j.cell.2015.05.002
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
doi: 10.1093/bioinformatics/bts635
Shekhar, K. et al. Comprehensive classification of retinal bipolar neurons by single-cell transcriptomics. Cell 166, 1308–1323 and 1330 (2016).
pubmed: 5003425
pmcid: 5003425
doi: 10.1016/j.cell.2016.07.054
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
Wierman, M. B., Burbulis, I. E., Chronister, W. D., Bekiranov, S. & McConnell, M. J. in Genomic Mosaicism in Neurons and Other Cell Types Vol. 131 (ed. Gage, F. & Frade, J.) (Humana Press, New York, 2017).
Burbulis, I. E. et al. Improved molecular karyotyping in glioblastoma. Mutat. Res. 811, 16–26 (2018).
pubmed: 30055482
doi: 10.1016/j.mrfmmm.2018.06.002
Garvin, T. et al. Interactive analysis and assessment of single-cell copy-number variations. Nat. Methods 12, 1058–1060 (2015).