Antioxidant Activity and Role of Culture Condition in the Optimization of Red Pigment Production by Talaromyces purpureogenus KKP Through Response Surface Methodology.


Journal

Current microbiology
ISSN: 1432-0991
Titre abrégé: Curr Microbiol
Pays: United States
ID NLM: 7808448

Informations de publication

Date de publication:
Aug 2020
Historique:
received: 30 09 2019
accepted: 14 04 2020
pubmed: 25 4 2020
medline: 26 3 2021
entrez: 25 4 2020
Statut: ppublish

Résumé

The red pigment production by Talaromyces purpureogenus KKP, a soil isolate, was optimized by response surface methodology (RSM) in the present study. The cultural parameters, such as pH, temperature, dextrose, and peptone concentrations, were optimized for red pigment production using the central composite design (CCD) experimental design. A second-order quadratic model was used to calculate the relationships between the values at different levels of response. The optimum values of the selected variables under coded factors are 6.0, 27 °C, 2.25%, and 1.10% for pH, temperature, dextrose, and peptone, respectively. The selected variables were most effective in the enhancement of red pigment production at optimized culture conditions. In addition to optimization, the antioxidant activity of the pigment isolated in the present study was found to be promising with IC

Identifiants

pubmed: 32328751
doi: 10.1007/s00284-020-01995-4
pii: 10.1007/s00284-020-01995-4
doi:

Substances chimiques

Antioxidants 0
Culture Media 0
Pigments, Biological 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1780-1789

Références

Gmoser R, Ferreira JA, Lennartsson PR, Taherzadeh MJ (2017) Filamentous ascomycetes fungi as a source of natural pigments. Fungal Biol Biotechnol 4:4. https://doi.org/10.1186/s40694-017-0033-2
doi: 10.1186/s40694-017-0033-2 pubmed: 28955473 pmcid: 5611665
Heo YM, Kim K, Kwon SL et al (2018) Investigation of Filamentous Fungi Producing Safe, Functional Water-Soluble Pigments. Mycobiology 46:269–277. https://doi.org/10.1080/12298093.2018.1513114
doi: 10.1080/12298093.2018.1513114 pubmed: 30294487 pmcid: 6171424
Mukherjee G, Mishra T, Deshmukh SK (2017) Fungal Pigments: An Overview. In: Satyanarayana T, Deshmukh SK, Johri BN (eds) Developments in Fungal Biology and Applied Mycology. Springer Singapore, Singapore, pp 525–541
doi: 10.1007/978-981-10-4768-8_26
Sen T, Barrow CJ, Deshmukh SK (2019) Microbial pigments in the food industry—challenges and the way forward. Front Nutr. https://doi.org/10.3389/fnut.2019.00007
doi: 10.3389/fnut.2019.00007 pubmed: 30891448 pmcid: 6411662
Torres FAE, Zaccarim BR, de Lencastre Novaes LC et al (2016) Natural colorants from filamentous fungi. Appl Microbiol Biotechnol 100:2511–2521. https://doi.org/10.1007/s00253-015-7274-x
doi: 10.1007/s00253-015-7274-x pubmed: 26780357
Narsing Rao MP, Xiao M, Li W-J (2017) Fungal and bacterial pigments: secondary metabolites with wide applications. Front Microbiol. https://doi.org/10.3389/fmicb.2017.01113
doi: 10.3389/fmicb.2017.01113 pubmed: 28983284 pmcid: 5613514
Lian X, Liu L, Dong S et al (2015) Two new monascus red pigments produced by Shandong Zhonghui Food Company in China. Eur Food Res Technol 240:719–724. https://doi.org/10.1007/s00217-014-2376-8
doi: 10.1007/s00217-014-2376-8
Kim D, Ku S (2018) Beneficial effects of Monascus sp KCCM 10093 pigments and derivatives: a mini review. Mol J Synth Chem Nat Prod Chem. https://doi.org/10.3390/molecules23010098
doi: 10.3390/molecules23010098
Embaby AM, Hussein MN, Hussein A (2018) Monascus orange and red pigments production by Monascus purpureus ATCC16436 through co-solid state fermentation of corn cob and glycerol: an eco-friendly environmental low cost approach. PLoS ONE 13:e0207755. https://doi.org/10.1371/journal.pone.0207755
doi: 10.1371/journal.pone.0207755 pubmed: 30532218 pmcid: 6287831
Raja Rajeswari T, Ponnusami V, Kr S (2014) Production of Monascus pigment in low cost fermentation. Int J ChemTech Res 6:2929–2932
Liu B-H, Wu T-S, Su M-C et al (2005) Evaluation of citrinin occurrence and cytotoxicity in Monascus fermentation products. J Agric Food Chem 53:170–175. https://doi.org/10.1021/jf048878n
doi: 10.1021/jf048878n pubmed: 15631525
Patakova P (2013) Monascus secondary metabolites: production and biological activity. J Ind Microbiol Biotechnol 40:169–181. https://doi.org/10.1007/s10295-012-1216-8
doi: 10.1007/s10295-012-1216-8 pubmed: 23179468
Blanc PJ, Laussac JP, Le Bars J et al (1995) Characterization of monascidin A from Monascus as citrinin. Int J Food Microbiol 27:201–213
doi: 10.1016/0168-1605(94)00167-5
Frisvad JC, Yilmaz N, Thrane U et al (2013) Talaromyces atroroseus, a new species efficiently producing industrially relevant red pigments. PLoS ONE 8:e84102. https://doi.org/10.1371/journal.pone.0084102
doi: 10.1371/journal.pone.0084102 pubmed: 24367630 pmcid: 3868618
Tam EWT, Tsang C-C, Lau SKP, Woo PCY (2015) Polyketides, toxins and pigments in Penicillium marneffei. Toxins 7:4421–4436. https://doi.org/10.3390/toxins7114421
doi: 10.3390/toxins7114421 pubmed: 26529013 pmcid: 4663511
Liang B, Du X-J, Li P et al (2018) Investigation of citrinin and pigment biosynthesis mechanisms in Monascus purpureus by transcriptomic analysis. Front Microbiol. https://doi.org/10.3389/fmicb.2018.01374
doi: 10.3389/fmicb.2018.01374 pubmed: 30705672 pmcid: 6309047
Arai T, Koganei K, Umemura S et al (2013) Importance of the ammonia assimilation by Penicillium purpurogenum in amino derivative Monascus pigment, PP-V, production. AMB Express 3:19. https://doi.org/10.1186/2191-0855-3-19
doi: 10.1186/2191-0855-3-19 pubmed: 23537394 pmcid: 3621813
Chadni Z, Rahaman MH, Jerin I et al (2017) Extraction and optimisation of red pigment production as secondary metabolites from Talaromyces verruculosus and its potential use in textile industries. Mycology 8:48–57. https://doi.org/10.1080/21501203.2017.1302013
doi: 10.1080/21501203.2017.1302013
Méndez A, Pérez C, Montañéz JC et al (2011) Red pigment production by Penicillium purpurogenum GH2 is influenced by pH and temperature. J Zhejiang Univ Sci B 12:961–968. https://doi.org/10.1631/jzus.B1100039
doi: 10.1631/jzus.B1100039 pubmed: 22135144 pmcid: 3232428
Hawksworth DL, Lücking R (2017) Fungal diversity revisited: 2.2 to 3.8 million species. Microbiol Spectr. https://doi.org/10.1128/microbiolspec.FUNK-0052-2016
doi: 10.1128/microbiolspec.FUNK-0052-2016 pubmed: 28752818
Grijseels S, Nielsen JC, Nielsen J et al (2017) Physiological characterization of secondary metabolite producing Penicillium cell factories. Fungal Biol Biotechnol 4:8. https://doi.org/10.1186/s40694-017-0036-z
doi: 10.1186/s40694-017-0036-z pubmed: 29075506 pmcid: 5644182
Gil MV, Martínez M, García S et al (2013) Response surface methodology as an efficient tool for optimizing carbon adsorbents for CO
doi: 10.1016/j.fuproc.2012.06.018
Padmapriya C, Murugesan R (2016) Optimization of parameters for natural red pigment production from Penicillium purpurogenum using cassava waste by central composite design. J Appl Nat Sci 8:1663–1669
doi: 10.31018/jans.v8i3.1020
Pandey N, Jain R, Pandey A, Tamta S (2018) Optimisation and characterisation of the orange pigment produced by a cold adapted strain of Penicillium sp. (GBPI_P155) isolated from mountain ecosystem. Mycology 9:81–92. https://doi.org/10.1080/21501203.2017.1423127
doi: 10.1080/21501203.2017.1423127 pubmed: 30123664 pmcid: 6059051
Santos-Ebinuma VC, Roberto IC, Teixeira MFS, Pessoa A (2014) Improvement of submerged culture conditions to produce colorants by Penicillium purpurogenum. Braz J Microbiol Publ Braz Soc Microbiol 45:731–742. https://doi.org/10.1590/s1517-83822014000200049
doi: 10.1590/s1517-83822014000200049
Schoch CL, Seifert KA, Huhndorf S et al (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci USA 109:6241–6246. https://doi.org/10.1073/pnas.1117018109
doi: 10.1073/pnas.1117018109 pubmed: 22454494
Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874. https://doi.org/10.1093/molbev/msw054
doi: 10.1093/molbev/msw054 pubmed: 27004904
Embaby AM, Hussein MN, Hussein A (2018) Monascus orange and red pigments production by Monascus purpureus ATCC16436 through co-solid state fermentation of corn cob and glycerol: an eco-friendly environmental low cost approach. PLoS ONE. https://doi.org/10.1371/journal.pone.0207755
doi: 10.1371/journal.pone.0207755 pubmed: 30532218 pmcid: 6287831
Adebiyi OE, Olayemi FO, Ning-Hua T, Guang-Zhi Z (2017) In vitro antioxidant activity, total phenolic and flavonoid contents of ethanol extract of stem and leaf of Grewia carpinifolia. Beni-Suef Univ J Basic Appl Sci 6:10–14. https://doi.org/10.1016/j.bjbas.2016.12.003
doi: 10.1016/j.bjbas.2016.12.003
Saeed N, Khan MR, Shabbir M (2012) Antioxidant activity, total phenolic and total flavonoid contents of whole plant extracts Torilis leptophylla L. BMC Complement Altern Med 12:221. https://doi.org/10.1186/1472-6882-12-221
doi: 10.1186/1472-6882-12-221 pubmed: 23153304 pmcid: 3524761
Singh S, Bajaj BK (2017) Potential application spectrum of microbial proteases for clean and green industrial production. Energy Ecol Environ 2:370–386. https://doi.org/10.1007/s40974-017-0076-5
doi: 10.1007/s40974-017-0076-5
Samson RA, Yilmaz N, Houbraken J et al (2011) Phylogeny and nomenclature of the genus Talaromyces and taxa accommodated in Penicillium subgenus Biverticillium. Stud Mycol 70:159–183. https://doi.org/10.3114/sim.2011.70.04
doi: 10.3114/sim.2011.70.04 pubmed: 22308048 pmcid: 3233910
Yilmaz N, Visagie CM, Houbraken J et al (2014) Polyphasic taxonomy of the genus Talaromyces. Stud Mycol 78:175–341. https://doi.org/10.1016/j.simyco.2014.08.001
doi: 10.1016/j.simyco.2014.08.001 pubmed: 25492983 pmcid: 4255554
Jin H-J, Zhang X, Cao H et al (2018) Chemical composition, security and bioactivity of the red pigment from Penicillium purpurogenum Li-3. Chem Biodivers 15:e1800300. https://doi.org/10.1002/cbdv.201800300
doi: 10.1002/cbdv.201800300 pubmed: 30230698
Liu L, Zhao J, Huang Y et al (2018) Diversifying of chemical structure of native Monascus pigments. Front Microbiol. https://doi.org/10.3389/fmicb.2018.03143
doi: 10.3389/fmicb.2018.03143 pubmed: 30761121 pmcid: 6312127
Steensels J, Snoek T, Meersman E et al (2014) Improving industrial yeast strains: exploiting natural and artificial diversity. FEMS Microbiol Rev 38:947–995. https://doi.org/10.1111/1574-6976.12073
doi: 10.1111/1574-6976.12073 pubmed: 24724938 pmcid: 4293462

Auteurs

Kishor Kumar Keekan (KK)

Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, 575018, India.
C206, Marine Biodiscovery Laboratory, School of Chemistry, National University of Ireland, Galway (NUI Galway), University Road, Galway, H91TK33, Ireland.

Sweta Hallur (S)

Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, 575018, India.

Prashant Kumar Modi (PK)

Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, 575018, India.

Rajesh P Shastry (RP)

Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, 575018, India. rpshastry@gmail.com.

Articles similaires

Aspergillus Hydrogen-Ion Concentration Coculture Techniques Secondary Metabolism Streptomyces rimosus
Fragaria Light Plant Leaves Osmosis Stress, Physiological

A molecular mechanism for bright color variation in parrots.

Roberto Arbore, Soraia Barbosa, Jindich Brejcha et al.
1.00
Animals Feathers Pigmentation Parrots Aldehyde Dehydrogenase

Classifications MeSH