Dopamine D1R-neuron cacna1c deficiency: a new model of extinction therapy-resistant post-traumatic stress.


Journal

Molecular psychiatry
ISSN: 1476-5578
Titre abrégé: Mol Psychiatry
Pays: England
ID NLM: 9607835

Informations de publication

Date de publication:
06 2021
Historique:
received: 10 10 2019
accepted: 08 04 2020
revised: 06 03 2020
pubmed: 26 4 2020
medline: 12 10 2021
entrez: 26 4 2020
Statut: ppublish

Résumé

Post-traumatic stress disorder (PTSD) is characterized by persistent fear memory of remote traumatic events, mental re-experiencing of the trauma, long-term cognitive deficits, and PTSD-associated hippocampal dysfunction. Extinction-based therapeutic approaches acutely reduce fear. However, many patients eventually relapse to the original conditioned fear response. Thus, understanding the underlying molecular mechanisms of this condition is critical to developing new treatments for patients. Mutations in the neuropsychiatric risk gene CACNA1C, which encodes the Ca

Identifiants

pubmed: 32332995
doi: 10.1038/s41380-020-0730-8
pii: 10.1038/s41380-020-0730-8
pmc: PMC8214244
mid: NIHMS1708118
doi:

Substances chimiques

CACNA1C protein, human 0
CACNA1C protein, mouse 0
Calcium Channels, L-Type 0
Dopamine VTD58H1Z2X

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

2286-2298

Subventions

Organisme : NCATS NIH HHS
ID : TL1 TR002386
Pays : United States
Organisme : NIDA NIH HHS
ID : R01 DA029122
Pays : United States
Organisme : NCI NIH HHS
ID : T32 CA078586
Pays : United States
Organisme : NIDA NIH HHS
ID : T32 DA039080
Pays : United States

Informations de copyright

© 2020. The Author(s), under exclusive licence to Springer Nature Limited.

Références

American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders. 5th edn: Washington, DC: American Psychiatric Association; 2013.
Myers KM, Davis M. Behavioral and neural analysis of extinction. Neuron. 2002;36:567–84.
pubmed: 12441048 doi: 10.1016/S0896-6273(02)01064-4
Deslauriers J, Toth M, Der-Avakian A, Risbrough VB. Current status of animal models of posttraumatic stress disorder: behavioral and biological phenotypes, and future challenges in improving translation. Biol Psychiatry. 2018;83:895–907.
pubmed: 29338843 doi: 10.1016/j.biopsych.2017.11.019
Logue MW, van Rooij SJH, Dennis EL, Davis SL, Hayes JP, Stevens JS, et al. Smaller hippocampal volume in posttraumatic stress disorder: a multisite ENIGMA-PGC study: subcortical volumetry results from posttraumatic stress disorder consortia. Biol Psychiatry. 2018;83:244–53.
pubmed: 29217296 doi: 10.1016/j.biopsych.2017.09.006
van Rooij SJH, Stevens JS, Ely TD, Hinrichs R, Michopoulos V, Winters SJ, et al. The role of the hippocampus in predicting future posttraumatic stress disorder symptoms in recently traumatized civilians. Biol Psychiatry. 2017;84:106–15.
pubmed: 29110899 pmcid: 5860925 doi: 10.1016/j.biopsych.2017.09.005
Garfinkel SN, Abelson JL, King AP, Sripada RK, Wang X, Gaines LM, et al. Impaired contextual modulation of memories in PTSD: an fMRI and psychophysiological study of extinction retention and fear renewal. J Neurosci. 2014;34:13435–43.
pubmed: 25274821 pmcid: 4262698 doi: 10.1523/JNEUROSCI.4287-13.2014
Milad MR, Pitman RK, Ellis CB, Gold AL, Shin LM, Lasko NB, et al. Neurobiological basis of failure to recall extinction memory in posttraumatic stress disorder. Biol Psychiatry. 2009;66:1075–82.
pubmed: 19748076 pmcid: 2787650 doi: 10.1016/j.biopsych.2009.06.026
True WR, Rice J, Eisen SA, Heath AC, Goldberg J, Lyons MJ, et al. A twin study of genetic and environmental contributions to liability for posttraumatic stress symptoms. Arch Gen Psychiatry. 1993;50:257–64.
pubmed: 8466386 doi: 10.1001/archpsyc.1993.01820160019002
Stein MB, Jang KL, Taylor S, Vernon PA, Livesley WJ. Genetic and environmental influences on trauma exposure and posttraumatic stress disorder symptoms: a twin study. Am J Psychiatry. 2002;159:1675–81.
pubmed: 12359672 doi: 10.1176/appi.ajp.159.10.1675
Afifi TO, Asmundson GJ, Taylor S, Jang KL. The role of genes and environment on trauma exposure and posttraumatic stress disorder symptoms: a review of twin studies. Clin Psychol Rev. 2010;30:101–12.
pubmed: 19892451 doi: 10.1016/j.cpr.2009.10.002
Krzyzewska IM, Ensink JBM, Nawijn L, Mul AN, Koch SB, Venema A, et al. Genetic variant in CACNA1C is associated with PTSD in traumatized police officers. Eur J Hum Genet. 2018;26:247–57.
pubmed: 29362489 pmcid: 5838973 doi: 10.1038/s41431-017-0059-1
Kabir ZD, Martinez-Rivera A, Rajadhyaksha AM. From gene to behavior: L-type calcium channel mechanisms underlying neuropsychiatric symptoms. Neurotherapeutics. 2017;14:588–613.
pubmed: 28497380 pmcid: 5509628 doi: 10.1007/s13311-017-0532-0
Bavley CC, Fischer DK, Rizzo BK, Rajadhyaksha AM. Cav1.2 channels mediate persistent chronic stress-induced behavioral deficits that are associated with prefrontal cortex activation of the p25/Cdk5-glucocorticoid receptor pathway. Neurobiol Stress. 2017;7:27–37.
pubmed: 28289693 pmcid: 5338724 doi: 10.1016/j.ynstr.2017.02.004
Dedic N, Pohlmann ML, Richter JS, Mehta D, Czamara D, Metzger MW, et al. Cross-disorder risk gene CACNA1C differentially modulates susceptibility to psychiatric disorders during development and adulthood. Mol Psychiatry. 2018;23:533–43.
pubmed: 28696432 doi: 10.1038/mp.2017.133
Giordano TP, Tropea TF, Satpute SS, Sinnegger-Brauns MJ, Striessnig J, Kosofsky BE, et al. Molecular switch from L-type Ca v 1.3 to Ca v 1.2 Ca2+ channel signaling underlies long-term psychostimulant-induced behavioral and molecular plasticity. J Neurosci. 2010;30:17051–62.
pubmed: 21159975 pmcid: 3077109 doi: 10.1523/JNEUROSCI.2255-10.2010
El-Ghundi M, O’Dowd BF, George SR. Prolonged fear responses in mice lacking dopamine D1 receptor. Brain Res. 2001;892:86–93.
pubmed: 11172752 doi: 10.1016/S0006-8993(00)03234-0
Lee AS, Ra S, Rajadhyaksha AM, Britt JK, De Jesus-Cortes H, Gonzales KL, et al. Forebrain elimination of cacna1c mediates anxiety-like behavior in mice. Mol Psychiatry. 2012;17:1054–5.
pubmed: 22665262 pmcid: 3481072 doi: 10.1038/mp.2012.71
Burgdorf CE, Schierberl KC, Lee AS, Fischer DK, Van Kempen TA, Mudragel V, et al. Extinction of contextual cocaine memories requires Cav1.2 within D1R-expressing cells and recruits hippocampal Cav1.2-dependent signaling mechanisms. J Neurosci. 2017;37:11894–911.
pubmed: 29089442 pmcid: 5719973 doi: 10.1523/JNEUROSCI.2397-17.2017
Bavley CC, Rice RC, Fischer DK, Fakira AK, Byrne M, Kosovsky M, et al. Rescue of learning and memory deficits in the human nonsyndromic intellectual disability cereblon knock-out mouse model by targeting the AMP-activated protein kinase-mTORC1 translational pathway. J Neurosci. 2018;38:2780–95.
pubmed: 29459374 pmcid: 5852658 doi: 10.1523/JNEUROSCI.0599-17.2018
Kabir ZD, Che A, Fischer DK, Rice RC, Rizzo BK, Byrne M, et al. Rescue of impaired sociability and anxiety-like behavior in adult cacna1c-deficient mice by pharmacologically targeting eIF2alpha. Mol Psychiatry. 2017;22:1096–109.
pubmed: 28584287 pmcid: 5863913 doi: 10.1038/mp.2017.124
Norrholm SD, Jovanovic T, Olin IW, Sands LA, Karapanou I, Bradley B, et al. Fear extinction in traumatized civilians with posttraumatic stress disorder: relation to symptom severity. Biol Psychiatry. 2011;69:556–63.
pubmed: 21035787 doi: 10.1016/j.biopsych.2010.09.013
Cerda M, Sagdeo A, Johnson J, Galea S. Genetic and environmental influences on psychiatric comorbidity: a systematic review. J Affect Disord. 2010;126:14–38.
pubmed: 20004978 doi: 10.1016/j.jad.2009.11.006
Astur RS, St Germain SA, Tolin D, Ford J, Russell D, Stevens M. Hippocampus function predicts severity of post-traumatic stress disorder. Cyberpsychol Behav. 2006;9:234–40.
pubmed: 16640486 doi: 10.1089/cpb.2006.9.234
Morris R. Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods. 1984;11:47–60.
pubmed: 6471907 doi: 10.1016/0165-0270(84)90007-4
Ishikawa R, Fukushima H, Frankland PW, Kida S. Hippocampal neurogenesis enhancers promote forgetting of remote fear memory after hippocampal reactivation by retrieval. Elife. 2016;5:e17464.
pubmed: 27669409 pmcid: 5036964 doi: 10.7554/eLife.17464
Gao A, Xia F, Guskjolen AJ, Ramsaran AI, Santoro A, Josselyn SA, et al. Elevation of hippocampal neurogenesis induces a temporally graded pattern of forgetting of contextual fear memories. J Neurosci. 2018;38:3190–8.
pubmed: 29453206 pmcid: 6596062 doi: 10.1523/JNEUROSCI.3126-17.2018
Takamura N, Nakagawa S, Masuda T, Boku S, Kato A, Song N, et al. The effect of dopamine on adult hippocampal neurogenesis. Prog Neuropsychopharmacol Biol Psychiatry. 2014;50:116–24.
pubmed: 24374069 doi: 10.1016/j.pnpbp.2013.12.011
Lee AS, De Jesus-Cortes H, Kabir ZD, Knobbe W, Orr M, Burgdorf C et al. The Neuropsychiatric Disease-Associated Gene cacna1c Mediates Survival of Young Hippocampal Neurons. eNeuro. 2016;3:1–11.
doi: 10.1523/ENEURO.0006-16.2016
De Jesus-Cortes H, Rajadhyaksha AM, Pieper AA. Cacna1c: protecting young hippocampal neurons in the adult brain. Neurogenesis (Austin). 2016;3:e1231160.
doi: 10.1080/23262133.2016.1231160
Temme SJ, Bell RZ, Fisher GL, Murphy GG. Deletion of the mouse homolog of CACNA1C disrupts discrete forms of hippocampal-dependent memory and neurogenesis within the dentate gyrus. eNeuro. 2016;3:ENEURO.0118-16.2016.
pubmed: 27957527 pmcid: 5124786 doi: 10.1523/ENEURO.0118-16.2016
Wang JW, David DJ, Monckton JE, Battaglia F, Hen R. Chronic fluoxetine stimulates maturation and synaptic plasticity of adult-born hippocampal granule cells. J Neurosci. 2008;28:1374–84.
pubmed: 18256257 pmcid: 6671574 doi: 10.1523/JNEUROSCI.3632-07.2008
Malberg JE, Eisch AJ, Nestler EJ, Duman RS. Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci. 2000;20:9104–10.
pubmed: 11124987 pmcid: 6773038 doi: 10.1523/JNEUROSCI.20-24-09104.2000
Boldrini M, Underwood MD, Hen R, Rosoklija GB, Dwork AJ, John Mann J, et al. Antidepressants increase neural progenitor cells in the human hippocampus. Neuropsychopharmacology. 2009;34:2376–89.
pubmed: 19606083 doi: 10.1038/npp.2009.75
Alexander W. Pharmacotherapy for post-traumatic stress disorder in combat veterans: focus on antidepressants and atypical antipsychotic agents. P T. 2012;37:32–8.
pubmed: 22346334 pmcid: 3278188
Hoskins M, Pearce J, Bethell A, Dankova L, Barbui C, Tol WA, et al. Pharmacotherapy for post-traumatic stress disorder: systematic review and meta-analysis. Br J Psychiatry. 2015;206:93–100.
pubmed: 25644881 doi: 10.1192/bjp.bp.114.148551
Pieper AA, McKnight SL. Benefits of enhancing nicotinamide adenine dinucleotide levels in damaged or diseased nerve cells. Cold Spring Harb Symp Quant Biol. 2019;LXXXIII:207–17.
Bauman MD, Schumann CM, Carlson EL, Taylor SL, Vazquez-Rosa E, Cintron-Perez CJ, et al. Neuroprotective efficacy of P7C3 compounds in primate hippocampus. Transl Psychiatry. 2018;8:202.
pubmed: 30258178 pmcid: 6158178 doi: 10.1038/s41398-018-0244-1
Loris ZB, Hynton JR, Pieper AA, Dietrich WD. Beneficial effects of delayed P7C3-A20 treatment after transient MCAO in rats. Transl Stroke Res. 2018;9:146–56.
pubmed: 28842830 doi: 10.1007/s12975-017-0565-z
Blaya MO, Bramlett HM, Naidoo J, Pieper AA, Dietrich WD. Neuroprotective efficacy of a proneurogenic compound after traumatic brain injury. J Neurotrauma. 2014;31:476–86.
pubmed: 24070637 pmcid: 3934600 doi: 10.1089/neu.2013.3135
Esposito MS, Piatti VC, Laplagne DA, Morgenstern NA, Ferrari CC, Pitossi FJ, et al. Neuronal differentiation in the adult hippocampus recapitulates embryonic development. J Neurosci. 2005;25:10074–86.
pubmed: 16267214 pmcid: 6725804 doi: 10.1523/JNEUROSCI.3114-05.2005
Loris ZB, Pieper AA, Dietrich WD. The neuroprotective compound P7C3-A20 promotes neurogenesis and improves cognitive function after ischemic stroke. Exp Neurol. 2017;290:63–73.
pubmed: 28077334 doi: 10.1016/j.expneurol.2017.01.006
Liberzon I, Abelson JL. Context processing and the neurobiology of post-traumatic stress disorder. Neuron. 2016;92:14–30.
pubmed: 27710783 pmcid: 5113735 doi: 10.1016/j.neuron.2016.09.039
Phillips RG, LeDoux JE. Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behav Neurosci. 1992;106:274–85.
pubmed: 1590953 doi: 10.1037/0735-7044.106.2.274
van der Kolk BA, Spinazzola J, Blaustein ME, Hopper JW, Hopper EK, Korn DL, et al. A randomized clinical trial of eye movement desensitization and reprocessing (EMDR), fluoxetine, and pill placebo in the treatment of posttraumatic stress disorder: treatment effects and long-term maintenance. J Clin Psychiatry. 2007;68:37–46.
pubmed: 17284128 doi: 10.4088/JCP.v68n0105
Patriarchi T, Buonarati OR, Hell JW. Postsynaptic localization and regulation of AMPA receptors and Cav1.2 by beta2 adrenergic receptor/PKA and Ca(2+)/CaMKII signaling. EMBO J. 2018;37:e99771.
pubmed: 30249603 pmcid: 6187224 doi: 10.15252/embj.201899771
Jhaveri DJ, Nanavaty I, Prosper BW, Marathe S, Husain BF, Kernie SG, et al. Opposing effects of alpha2- and beta-adrenergic receptor stimulation on quiescent neural precursor cell activity and adult hippocampal neurogenesis. PLoS One. 2014;9:e98736.
pubmed: 24922313 pmcid: 4055446 doi: 10.1371/journal.pone.0098736
Mishra A, Singh S, Tiwari V, Bano S, Shukla S. Dopamine D1 receptor agonism induces dynamin related protein-1 inhibition to improve mitochondrial biogenesis and dopaminergic neurogenesis in rat model of Parkinson’s disease. Behav Brain Res. 2020;378:112304.
pubmed: 31626851 doi: 10.1016/j.bbr.2019.112304
Shuto T, Kuroiwa M, Sotogaku N, Kawahara Y, Oh YS, Jang JH et al. Obligatory roles of dopamine D1 receptors in the dentate gyrus in antidepressant actions of a selective serotonin reuptake inhibitor, fluoxetine. Mol Psychiatry. 2018;9:146–56.
Duman RS, Monteggia LM. A neurotrophic model for stress-related mood disorders. Biol Psychiatry. 2006;59:1116–27.
pubmed: 16631126 doi: 10.1016/j.biopsych.2006.02.013
Steenkamp MM, Litz BT, Hoge CW, Marmar CR. Psychotherapy for Military-Related PTSD: A Review of Randomized Clinical Trials. JAMA. 2015;314:489–500.
pubmed: 26241600 doi: 10.1001/jama.2015.8370
Ernst A, Alkass K, Bernard S, Salehpour M, Perl S, Tisdale J, et al. Neurogenesis in the striatum of the adult human brain. Cell. 2014;156:1072–83.
pubmed: 24561062 doi: 10.1016/j.cell.2014.01.044
Spalding KL, Bergmann O, Alkass K, Bernard S, Salehpour M, Huttner HB, et al. Dynamics of hippocampal neurogenesis in adult humans. Cell. 2013;153:1219–27.
pubmed: 23746839 pmcid: 4394608 doi: 10.1016/j.cell.2013.05.002
Dennis CV, Suh LS, Rodriguez ML, Kril JJ, Sutherland GT. Human adult neurogenesis across the ages: an immunohistochemical study. Neuropathol Appl Neurobiol. 2016;42:621–38.
pubmed: 27424496 pmcid: 5125837 doi: 10.1111/nan.12337
Eriksson PS, Perfilieva E, Bjork-Eriksson T, Alborn AM, Nordborg C, Peterson DA, et al. Neurogenesis in the adult human hippocampus. Nat Med. 1998;4:1313–7.
pubmed: 9809557 doi: 10.1038/3305
Knoth R, Singec I, Ditter M, Pantazis G, Capetian P, Meyer RP, et al. Murine features of neurogenesis in the human hippocampus across the lifespan from 0 to 100 years. PLoS ONE. 2010;5:e8809.
pubmed: 20126454 pmcid: 2813284 doi: 10.1371/journal.pone.0008809
Yang P, Zhang J, Shi H, Zhang J, Xu X, Xiao X, et al. Developmental profile of neurogenesis in prenatal human hippocampus: an immunohistochemical study. Int J Dev Neurosci. 2014;38:1–9.
pubmed: 24999120 doi: 10.1016/j.ijdevneu.2014.06.015
Sorrells SF, Paredes MF, Cebrian-Silla A, Sandoval K, Qi D, Kelley KW, et al. Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults. Nature. 2018;555:377–81.
pubmed: 29513649 pmcid: 6179355 doi: 10.1038/nature25975
Tobin MK, Musaraca K, Disouky A, Shetti A, Bheri A, Honer WG, et al. Human hippocampal neurogenesis persists in aged adults and Alzheimer’s disease patients. Cell Stem Cell. 2019;24:974–82. e973.
pubmed: 31130513 pmcid: 6608595 doi: 10.1016/j.stem.2019.05.003

Auteurs

Charlotte C Bavley (CC)

Pediatric Neurology, Pediatrics, Weill Cornell Medicine of Cornell University, New York, NY, 10065, USA.
Feil Family Brain and Mind Research Institute, Weill Cornell Medicine of Cornell University, New York, NY, 10065, USA.
Weill Cornell Autism Research Program, Weill Cornell Medicine of Cornell University, New York, NY, 10065, USA.

Zeeba D Kabir (ZD)

Pediatric Neurology, Pediatrics, Weill Cornell Medicine of Cornell University, New York, NY, 10065, USA.
Weill Cornell Autism Research Program, Weill Cornell Medicine of Cornell University, New York, NY, 10065, USA.

Alexander P Walsh (AP)

Pediatric Neurology, Pediatrics, Weill Cornell Medicine of Cornell University, New York, NY, 10065, USA.
Weill Cornell Autism Research Program, Weill Cornell Medicine of Cornell University, New York, NY, 10065, USA.

Maria Kosovsky (M)

Pediatric Neurology, Pediatrics, Weill Cornell Medicine of Cornell University, New York, NY, 10065, USA.

Jonathan Hackett (J)

Pediatric Neurology, Pediatrics, Weill Cornell Medicine of Cornell University, New York, NY, 10065, USA.
Weill Cornell Autism Research Program, Weill Cornell Medicine of Cornell University, New York, NY, 10065, USA.

Herie Sun (H)

Pediatric Neurology, Pediatrics, Weill Cornell Medicine of Cornell University, New York, NY, 10065, USA.

Edwin Vázquez-Rosa (E)

Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.
Department of Psychiatry Case Western Reserve University, Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA.

Coral J Cintrón-Pérez (CJ)

Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.
Department of Psychiatry Case Western Reserve University, Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA.

Emiko Miller (E)

Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.
Department of Psychiatry Case Western Reserve University, Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA.

Yeojung Koh (Y)

Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA.
Department of Psychiatry Case Western Reserve University, Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA.

Andrew A Pieper (AA)

Weill Cornell Autism Research Program, Weill Cornell Medicine of Cornell University, New York, NY, 10065, USA. Andrew.Pieper@HarringtonDiscovery.org.
Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA. Andrew.Pieper@HarringtonDiscovery.org.
Department of Psychiatry Case Western Reserve University, Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA. Andrew.Pieper@HarringtonDiscovery.org.

Anjali M Rajadhyaksha (AM)

Pediatric Neurology, Pediatrics, Weill Cornell Medicine of Cornell University, New York, NY, 10065, USA. amr2011@med.cornell.edu.
Feil Family Brain and Mind Research Institute, Weill Cornell Medicine of Cornell University, New York, NY, 10065, USA. amr2011@med.cornell.edu.
Weill Cornell Autism Research Program, Weill Cornell Medicine of Cornell University, New York, NY, 10065, USA. amr2011@med.cornell.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH