Juvenile myoclonic epilepsy shows increased posterior theta, and reduced sensorimotor beta resting connectivity.


Journal

Epilepsy research
ISSN: 1872-6844
Titre abrégé: Epilepsy Res
Pays: Netherlands
ID NLM: 8703089

Informations de publication

Date de publication:
07 2020
Historique:
received: 15 11 2019
revised: 06 03 2020
accepted: 26 03 2020
pubmed: 27 4 2020
medline: 19 8 2021
entrez: 27 4 2020
Statut: ppublish

Résumé

Widespread structural and functional brain network changes have been shown in Juvenile Myoclonic Epilepsy (JME) despite normal clinical neuroimaging. We sought to better define these changes using magnetoencephalography (MEG) and source space connectivity analysis for optimal neurophysiological and anatomical localisation. We consecutively recruited 26 patients with JME who underwent resting state MEG recording, along with 26 age-and-sex matched controls. Whole brain connectivity was determined through correlation of Automated Anatomical Labelling (AAL) atlas source space MEG timeseries in conventional frequency bands of interest delta (1-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz) and gamma (40-60 Hz). We used a Linearly Constrained Minimum Variance (LCMV) beamformer to extract voxel wise time series of 'virtual sensors' for the desired frequency bands, followed by connectivity analysis using correlation between frequency- and node-specific power fluctuations, for the voxel maxima in each AAL atlas label, correcting for noise, potentially spurious connections and multiple comparisons. We found increased connectivity in the theta band in posterior brain regions, surviving statistical correction for multiple comparisons (corrected p < 0.05), and decreased connectivity in the beta band in sensorimotor cortex, between right pre- and post- central gyrus (p < 0.05) in JME compared to controls. Altered resting-state MEG connectivity in JME comprised increased connectivity in posterior theta - the frequency band associated with long range connections affecting attention and arousal - and decreased beta-band sensorimotor connectivity. These findings likely relate to altered regulation of the sensorimotor network and seizure prone states in JME.

Sections du résumé

BACKGROUND
Widespread structural and functional brain network changes have been shown in Juvenile Myoclonic Epilepsy (JME) despite normal clinical neuroimaging. We sought to better define these changes using magnetoencephalography (MEG) and source space connectivity analysis for optimal neurophysiological and anatomical localisation.
METHODS
We consecutively recruited 26 patients with JME who underwent resting state MEG recording, along with 26 age-and-sex matched controls. Whole brain connectivity was determined through correlation of Automated Anatomical Labelling (AAL) atlas source space MEG timeseries in conventional frequency bands of interest delta (1-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz) and gamma (40-60 Hz). We used a Linearly Constrained Minimum Variance (LCMV) beamformer to extract voxel wise time series of 'virtual sensors' for the desired frequency bands, followed by connectivity analysis using correlation between frequency- and node-specific power fluctuations, for the voxel maxima in each AAL atlas label, correcting for noise, potentially spurious connections and multiple comparisons.
RESULTS
We found increased connectivity in the theta band in posterior brain regions, surviving statistical correction for multiple comparisons (corrected p < 0.05), and decreased connectivity in the beta band in sensorimotor cortex, between right pre- and post- central gyrus (p < 0.05) in JME compared to controls.
CONCLUSIONS
Altered resting-state MEG connectivity in JME comprised increased connectivity in posterior theta - the frequency band associated with long range connections affecting attention and arousal - and decreased beta-band sensorimotor connectivity. These findings likely relate to altered regulation of the sensorimotor network and seizure prone states in JME.

Identifiants

pubmed: 32335503
pii: S0920-1211(19)30615-1
doi: 10.1016/j.eplepsyres.2020.106324
pmc: PMC7684644
pii:
doi:

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

106324

Subventions

Organisme : Medical Research Council
ID : MR/K005464/1
Pays : United Kingdom
Organisme : Medical Research Council
ID : MR/K501086/1
Pays : United Kingdom
Organisme : Wellcome Trust
ID : 104943/Z/14/Z
Pays : United Kingdom

Informations de copyright

Copyright © 2020. Published by Elsevier B.V.

Déclaration de conflit d'intérêts

Declaration of Competing Interest The authors declare no conflicts of interest. We confirm that we have read the Journal’s position on issues involved in ethical publication and affirm that this report is consistent with those guidelines.

Références

Clin Neurophysiol. 2000 Jul;111(7):1300-5
pubmed: 10880806
Epilepsy Behav. 2010 Nov;19(3):513-7
pubmed: 20797914
Sci Rep. 2017 Aug 29;7(1):9685
pubmed: 28852152
Elife. 2019 Apr 30;8:
pubmed: 31038453
Neurology. 2012 May 15;78(20):1555-9
pubmed: 22551729
Epilepsia. 2014 Jun;55(6):835-40
pubmed: 24702672
PLoS One. 2009 Aug 03;4(8):e6475
pubmed: 19649252
Methods. 2001 Oct;25(2):249-71
pubmed: 11812209
Electroencephalogr Clin Neurophysiol. 1981 Mar;51(3):253-64
pubmed: 6163614
Proc Natl Acad Sci U S A. 2005 Oct 18;102(42):15236-40
pubmed: 16217042
Neuroimage Clin. 2014 Nov 27;7:98-104
pubmed: 25610771
Clin Neurophysiol. 2016 Feb;127(2):1147-1156
pubmed: 26522940
Neuroimage. 2013 Oct 1;79:223-33
pubmed: 23639261
J Pediatr Neurosci. 2013 May;8(2):97-103
pubmed: 24082923
Neuroscientist. 2013 Feb;19(1):43-61
pubmed: 22547530
Epilepsia. 2008 Apr;49(4):657-62
pubmed: 18177360
Epilepsy Behav. 2007 Mar;10(2):263-7
pubmed: 17258506
Epilepsia. 2012 Dec;53(12):2091-8
pubmed: 23106095
Neuroimage. 2012 Aug 15;62(2):911-22
pubmed: 22248580
Epilepsia. 2007 May;48(5):941-9
pubmed: 17381440
Clin Neurophysiol Pract. 2017 Aug 04;2:170-185
pubmed: 30214992
Front Psychol. 2011 Sep 05;2:204
pubmed: 21922012
Epilepsia. 2011 Mar;52(3):515-22
pubmed: 21269293
Neuroimage. 2013 Oct 15;80:246-62
pubmed: 23631983
Comput Intell Neurosci. 2011;2011:156869
pubmed: 21253357
Neuroimage. 2015 Aug 15;117:439-48
pubmed: 25862259
Neuroimage. 2002 Jan;15(1):273-89
pubmed: 11771995
Epilepsy Res. 2011 Sep;96(1-2):11-23
pubmed: 21601428
Iran J Psychiatry. 2014 Mar;9(1):14-9
pubmed: 25561943
Epilepsy Res. 2014 Feb;108(2):257-66
pubmed: 24315023
Epilepsy Res. 2000 Dec;42(2-3):105-15
pubmed: 11074183
Clin Neurophysiol. 2011 Nov;122(11):2128-38
pubmed: 21571587
Epilepsia. 2004 Jan;45(1):77-80
pubmed: 14692911
Epilepsy Res. 2013 Oct;106(3):357-69
pubmed: 23886656
PLoS One. 2015 Sep 14;10(9):e0138119
pubmed: 26368933
Epilepsy Behav. 2013 Jul;28 Suppl 1:S15-7
pubmed: 23756473
Neuroimage. 2014 Jul 15;95:330-5
pubmed: 24412400
Brain. 2014 Sep;137(Pt 9):2469-79
pubmed: 25001494
Epilepsia. 1994 Mar-Apr;35(2):285-96
pubmed: 8156946
Hum Brain Mapp. 2009 Apr;30(4):1168-87
pubmed: 18465747
Brain. 2019 Nov 1;142(11):3514-3529
pubmed: 31553044
Neuroimage Clin. 2015 May 23;8:503-15
pubmed: 26106575
Brain. 2011 Jun;134(Pt 6):1710-9
pubmed: 21616969
Neuroimage. 2010 Jan 1;49(1):80-93
pubmed: 19679190
Epilepsy Res. 2009 Aug;85(2-3):187-98
pubmed: 19394798
Int J Psychophysiol. 2000 Dec 1;38(3):301-13
pubmed: 11102669
Front Neurol. 2014 Jul 04;5:93
pubmed: 25071695
Brain. 2004 May;127(Pt 5):1127-44
pubmed: 15033899
Neuroimage. 2006 Jul 15;31(4):1700-10
pubmed: 16624589
Epilepsia. 2012 Feb;53(2):234-48
pubmed: 22150583
Epilepsy Res. 2012 May;99(3):281-92
pubmed: 22240326
Neuroimage Clin. 2019;22:101759
pubmed: 30897433
PLoS One. 2014 Oct 10;9(10):e110136
pubmed: 25302690
Hum Brain Mapp. 2015 Oct;36(10):3935-49
pubmed: 26177579
Neuroimage. 2016 Sep;138:284-293
pubmed: 27262239
Seizure. 2015 Aug;30:124-31
pubmed: 26216697
Hum Brain Mapp. 2002 Jan;15(1):1-25
pubmed: 11747097
Expert Rev Neurother. 2014 Jul;14(7):787-98
pubmed: 24875327
Spat Vis. 1997;10(4):433-6
pubmed: 9176952
Front Integr Neurosci. 2013 Dec 05;7:83
pubmed: 24367301
Epilepsia. 2011 Mar;52(3):507-14
pubmed: 21054353
Seizure. 2008 Apr;17(3):224-33
pubmed: 17697790
Curr Opin Neurobiol. 2010 Apr;20(2):156-65
pubmed: 20359884
PLoS One. 2013 Jul 09;8(7):e68192
pubmed: 23874535
Neural Plast. 2018 Dec 18;2018:5340717
pubmed: 30662457
Cereb Cortex. 2016 Aug;26(8):3508-26
pubmed: 27230218
Neural Plast. 2018 Feb 26;2018:7392187
pubmed: 29681927
Epilepsia. 2013 Sep;54(9):e138-41
pubmed: 23944956
Neuroimage. 2016 Apr 1;129:345-355
pubmed: 26827813
Epilepsia. 2016 Oct;57(10):e200-e204
pubmed: 27501083
Neuroinformatics. 2016 Jan;14(1):83-97
pubmed: 26433899

Auteurs

Bethany Routley (B)

Cardiff University Brain Research Imaging, School of Psychology, Cardiff University, United Kingdom.

Alexander Shaw (A)

Cardiff University Brain Research Imaging, School of Psychology, Cardiff University, United Kingdom.

Suresh D Muthukumaraswamy (SD)

School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.

Krish D Singh (KD)

Cardiff University Brain Research Imaging, School of Psychology, Cardiff University, United Kingdom.

Khalid Hamandi (K)

Cardiff University Brain Research Imaging, School of Psychology, Cardiff University, United Kingdom; The Wales Epilepsy Unit, Department of Neurology, University Hospital of Wales, Cardiff, United Kingdom. Electronic address: hamandik@cf.ac.uk.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH